ESTUDIO

“Análisis e Implementación de un Sistema de Certificación de Eficiencia Energética para Vehículos Motorizados”

Informe Final

PREPARADO POR

DEUMAN

Marzo 2007
ANÁLISIS E IMPLEMENTACIÓN DE UN SISTEMA DE CERTIFICACIÓN DE EFICIENCIA ENERGÉTICA PARA VEHÍCULOS MOTORIZADOS

INDICE

1 INTRODUCCIÓN .. 1

2 ANTECEDENTES .. 3

2.1 ANTECEDENTES GENERALES SOBRE EFICIENCIA ENERGÉTICA 3
 2.1.1 Programa País de Eficiencia Energética ... 3
 2.1.2 Potencial de mejora de la eficiencia energética por sectores 6
 2.1.3 Análisis del sector Transporte ... 8

2.2 ANTECEDENTES LEGALES Y NORMATIVOS ... 12
 2.2.1 Antecedentes sobre las regulaciones internacionales relacionadas con
 eficiencia energética .. 12
 2.2.2 Antecedentes sobre el marco institucional y normativo local en relación a
 temas energéticos .. 13
 2.2.3 Antecedentes sobre la institucionalidad legal y normativa en cuanto a
 regulación del sector transporte en Chile .. 14

2.3 EXPERIENCIA INTERNACIONAL SOBRE PROGRAMAS DE EFICIENCIA ENERGÉTICA 17
 2.3.1 Europa ... 17
 2.3.2 Asia .. 33
 2.3.3 Estados Unidos ... 37

2.4 ENSAYOS E INFRAESTRUCTURA PARA DETERMINAR EFICIENCIA ENERGÉTICA 41
 2.4.1 Unión Europea ... 41
 2.4.2 Estados Unidos ... 42
 2.4.3 Chile ... 46
 2.4.4 Comparación entre Europa, Estados Unidos y Chile 52
 2.4.5 Comparación del Ciclo NEDC (EUC+EUDC)con el Ciclo FTP 75 54

2.5 ANÁLISIS DE ASPECTOS TECNOLÓGICOS .. 59
 2.5.1 Vehículos a Gasolina ... 59
 2.5.2 Vehículos Diesel ... 59
 2.5.3 Combustibles Alternativos .. 60

3 DISEÑO DEL PROGRAMA DE CERTIFICACIÓN DE EFICIENCIA
 ENERGÉTICA .. 62
 3.1 DEFINICIÓN DE OBJETIVOS DEL PROGRAMA .. 62
 3.2 IDENTIFICACIÓN DEL MARCO GENERAL DE IMPLEMENTACIÓN 63
 3.2.1 Marco Institucional ... 63
 3.2.2 Proceso actual de certificación y homologación vehicular 64
 3.2.3 Características del parque automotor local 65
 3.3 MARCO LEGAL DE IMPLEMENTACIÓN ... 67
 3.4 UNIVERSO DE CERTIFICACIÓN ... 69
 3.5 SELECCIÓN DE UN INDICADOR DE EFICIENCIA ENERGÉTICA 70
 3.5.1 Cálculo de indicador ... 70
 3.5.2 Valor de referencia .. 71
 3.6 PROCEDIMIENTOS DE CERTIFICACIÓN ... 71
 3.7 DEFINICIÓN DE LA MUESTRA A ENSAYAR ... 72
 3.8 CAPACIDAD DE CERTIFICACIÓN ... 73
 3.9 PROCEDIMIENTOS EN PERIODO DE TRANSICIÓN 74
 3.10 DISEÑO DEL SELLO .. 75
3.10.1 Análisis Comparativo... 75
3.10.2 Rangos de eficiencia energética ... 78
3.10.3 Consideraciones de diseño ... 79
3.11 RECOMENDACIONES DE INSTRUMENTOS DE FOMENTO Y DIFUSIÓN DEL
PROGRAMA ...83
3.12 SEGUIMIENTO DEL PROGRAMA.. 84
3.13 ESTIMACIÓN DE COSTOS DE IMPLEMENTACIÓN Y OPERACIÓN85
4 DISCUSIÓN Y CONCLUSIONES... 87
5 BIBLIOGRAFÍA... 89

TABLAS

Tabla 2.1: Distribución del consumo de energía y del PIB para distintos
sectores de la actividad económica del país para el año 2002..................... 6
Tabla 2.2: Estimación sectorial del potencial de mejoramiento de la eficiencia
energética en Chile para el año 2000... 7
Tabla 2.3: Consumo de combustible (CC), año base 2000, 10
Tabla 2.4: Consumo de combustible (energia) agregada por categoría, 11
Tabla 2.5: Resultados del seguimiento año 2004..................................... 19
Tabla 2.6: Incentivos Económicos .. 35
Tabla 2.7: Grados de eficiencia energética para vehículos de pasajeros 37
Tabla 2.8: Grados de eficiencia energética para vehículos multipropósito
medianos de pasajeros... 37
Tabla 2.9: Características de los Ciclos ... 46
Tabla 2.10: Comparación de ciclos FTP-75 y EUC+EUDC...................... 58
Tabla 3.1: Procesos de homologación y modelos homologados por el 3CV 65
Tabla 3.2: Distribución porcentual de procesos de.................................. 65
Tabla 3.3: Marcas y modelos.. 66
Tabla 3.4: Segmentos propuestos según tipo de vehículo......................... 71
Tabla 3.5: Comparación de información entregada por sellos internacionales 76
Tabla 3.6: Propuesta de información contenida en el sello de EE 78
Tabla 3.7: Tabla de colores según la economía de combustible 79
Tabla 3.8: Número de ensayos adicionales y costos asociados al proceso de
determinación del consumo de combustible....................................... 86

FIGURAS

Figura 1.1: Metodología general ... 2
Figura 2.1: Mapa de Acción del Sistema Nacional de Eficiencia Energética 5
Figura 2.2: Etiquetas de consumo de combustible y emisiones específicas de
CO₂ utilizadas en España y Alemania. (Fuente: Estudio DLR).................. 26
Figura 2.3: Etiqueta de Información de Bélgica, Dinamarca, Portugal y el Reino
Unido. ... 28
Figura 2.4: Etiqueta de Información de España y Holanda. 29
Figura 2.5: Definición de las bandas de emisiones en la definición de categorías de eficiencia energética para Bélgica, Dinamarca y el Reino Unido. 29
Figura 2.6: Etiqueta propuesta para la Comunidad Europea. 31
Figura 2.7: Metas de economía de combustible para el 2010. 33
Figura 2.8: Metas de economía de combustible para el 2015. 33
Figura 2.9: Rendimiento promedio de autos vendidos en Japón. 34
Figura 2.10: Sello de eficiencia energética de 5 niveles. 36
Figura 2.11: Sello para certificar alta eficiencia energética. 36
Figura 2.12: Programa de eficiencia energética en USA. 39
Figura 2.13: Etiqueta de información de economía de combustible. 40
Figura 2.14: Vehículo sobre dinamómetro. ... 42
Figura 2.15: Vehículo sobre dinamómetro. ... 43
Figura 2.16: Ciclo de conducción en pantalla. 43
Figura 2.17: Medición de emisiones. ... 44
Figura 2.18: Ciclo urbano. ... 45
Figura 2.19: Ciclo Autopista. ... 45
Figura 2.20: Laboratorio Centro de Control e Inspección Vehicular. 47
Figura 2.21: Diagrama de Flujo EPA. .. 49
Figura 2.22: Ciclos de conducción UDDS. .. 50
Figura 2.23: Diagrama de Flujo EPA. .. 51
Figura 2.24: Ciclos de conducción ECE-15. ... 52
Figura 2.25: Ciclos de conducción EUDC. .. 52
Figura 2.26: Comparación de normativas internacionales para vehículos livianos de gasolina ... 53
Figura 2.27: Comparación de normativas internacionales para vehículos livianos de diesel ... 54
Figura 2.28: Emisiones en bins de VSP para CO₂. 55
Figura 2.29: Ciclo FTP75. ... 56
Figura 2.30: Ciclo NEDC. ... 56
Figura 3.1: Ventas anuales de vehículos livianos y comerciales v/s procesos de homologación y modelos homologados por el 3CV. 73
Figura 3.2: Proyección de Ventas anuales de vehículos livianos y comerciales v/s procesos de homologación y modelos homologados por el 3CV. 74
Figura 3.3: Sellos de Eficiencia Energética para electrodomésticos. 76
Figura 3.4: Sello de Eficiencia Energética tamaño grande con medidas. 80
Figura 3.5: Sello de Eficiencia Energética tamaño grande con medidas. 81
Figura 3.6: Sello de Eficiencia Energética permanente. 82
Figura 3.7: Sello de Eficiencia Energética permanente tamaño real con medidas. ... 83
ANEXOS

Anexo 1 Normativa Internacional de Eficiencia Energética
- Decisión 1753-2000-CE
- Directiva 1999-94
- Directiva 2003-73
- Directiva 2006-32-CE
- Directiva 80-181
- Directiva 89-617
- Directiva 91-441-CEE
- Directiva 93-116-CEE
- Directiva 93-59-CEE
- Directiva 94-12-CE
- Directiva 96-69-CE
- Directiva 98-69-CE
- Directiva 99-94-CE
- Fuel Economy Labeling of Motor Vehicles.

Anexo 2 Normativa Nacional Relacionada
- Decreto Supremo N° 122-91
- Decreto Supremo N° 156-90
- Decreto Supremo N° 211-91
- Decreto Supremo N° 212-92
- Decreto Supremo N° 280-92
- Decreto Supremo N° 298-95
- Decreto Supremo N° 36-01
- Decreto Supremo N° 38-92
- Decreto Supremo N° 54-94
- Decreto Supremo N° 54-97
- Decreto Supremo N° 55-98
- Decreto Supremo N° 80-04
- Ley 18.059
- Ley 18.290
- Ley 18.575
- Ley 19.496
- Ley 18.696
- Oficio 58-01

Anexo 3 Normas INN
- Flujograma
- NCH 03000-2006
- NCH 03010-2006
- NCH 03020-2006
Anexo 4 Antecedentes Centro de Control y Certificación Vehicular
- 3CV-LE-P001-V07-05, Procedimiento de pruebas de emisiones
- Estadísticas de homologaciones

Anexo 5 Diseño de Material de apoyo seminario de difusión
- Diseño Carpeta 1
- Diseño Carpeta 2
1 INTRODUCCIÓN

Este documento corresponde al Informe Final del estudio: “Análisis e Implementación de un Sistema de Certificación de Eficiencia Energética para Vehículos Motorizados”, que está siendo ejecutado por la empresa consultora DEUMAN, por encargo de la Subsecretaría de Transportes del Ministerio de Trasportes y Telecomunicaciones.

El objetivo principal de este estudio, tal como lo señalan las Bases Técnicas, es “determinar iniciativas de normativas y homologación, e identificar los instrumentos de política con los que se las podría promover un sello de eficiencia energética para vehículos”.

Los objetivos específicos del estudio son los siguientes:

i. Implementar un marco regulatorio para un sello de certificación energético para vehículos.

ii. Generar un proceso de homologación de vehículos para la certificación del sello de eficiencia energética.

iii. Generar propuestas de normativas sobre el sello de eficiencia energética para vehículos.

iv. Generar y diseñar el sello de eficiencia energética para vehículos.

La metodología general aplicada para el logro de tales objetivos, consistió en una recopilación de antecedentes, que incluyó la revisión de la experiencia internacional sobre programas de eficiencia energética, antecedentes sobre la aplicación del programa local de eficiencia energética, revisión de la oferta tecnológica en relación a eficiencia energética vehicular, antecedentes sobre las regulaciones internacionales relacionadas con eficiencia energética, antecedentes sobre el marco institucional y normativo local en relación a temas energéticos y metodologías de ensayos para estimar eficiencia energética en vehículos motorizados.

A partir de los antecedentes anteriores se hizo un diseño de programa de certificación de eficiencia energética, que contempla la definición de diversos elementos que constituyen tal programa, como por ejemplo, el diseño gráfico del sello, la información contenida en éste, el marco legal de aplicación, los segmentos vehiculares a que se aplica, definición del indicador de eficiencia energética y de ensayos y protocolos para su determinación.

Asimismo se incluye una estimación de costos unitarios asociados a la aplicación del programa así como también el diseño de programas de difusión y de seguimiento.

En la Figura 1.1, se muestra gráficamente la metodología antes descrita.
Figura 1.1: Metodología general
2 ANTECEDENTES

En este capítulo se presenta una revisión actualizada de los antecedentes pertinentes a la materia del estudio, recopilados como etapa inicial del estudio.

2.1 ANTECEDENTES GENERALES SOBRE EFICIENCIA ENERGÉTICA

2.1.1 Programa País de Eficiencia Energética

Con el objeto de fortalecer la política energética nacional, el Ministerio de Economía diseña y pone en marcha un Programa País de Eficiencia Energética (PPEE), en cuyo marco se han venido desarrollando diversos estudios conducentes al diagnóstico e identificación de oportunidades para lograr una mejora de los indicadores energéticos de distintos sectores del país.

Los objetivos del programa son los siguientes:

- Crear una cultura e Eficiencia Energética (EE) en el país
- Crear una institucionalidad público-privada en materias de Eficiencia Energética
- Proporcionar un marco legal e implementar instrumentos de fomento y educación

Para el logro de los objetivos antes señalados, el PPEE ha identificado las siguientes líneas de acción:

1. Generación de cultura de EE
2. Formulación de una política nacional de EE
3. Sistema de monitoreo y fiscalización de EE nacional
4. Marco económico
5. Marco regulatorio para la EE
6. Sistema de certificación de EE
7. Instrumentos e incentivos económicos, tributarios y financieros para la EE
8. Fomento de la EE en la empresa
9. Incorporación a mecanismos internacionales de EE
10. Política y programa sectorial de EE en vivienda, edificios y construcción
11. Política y programa sectorial de EE en transporte
12. Política y programa sectorial de EE en uso industrial (minería, agricultura y comercio)
13. Política y programa sectorial de EE en la transformación de energía
14. Política y programa sectorial de EE en el sector público
15. Innovación tecnológica para la EE

Cada uno de estos ámbitos tiene asociado una serie de líneas de acción específicas. Lo anterior se concentró en un mapa de acción donde se presentan
todas las líneas de acción a llevar a cabo para desarrollar un Sistema Nacional de Eficiencia Energética. El mapa de acción se puede ver en la Figura 2.1. Los avances más relevantes logrados al 2005, pueden ser sintetizados como sigue, en los ámbitos que se indica:

- **Política e institucionalidad**
 - Decreto que crea los Comités Operativo y Consultivo
 - Creación de instrumentos de fomento, educación y regulación
 - Asignación de presupuesto público

- **Participación de actores relevantes**
 - Participación permanente de 25 instituciones públicas y privadas en Comité Operativo

- **Actividades estructurales**
 - Alumbrado público
 - Compra y concesiones gubernamentales
 - Gestión de edificios públicos
 - Co-financiamiento de auditorias y Etiquetado
 - Eficiencia energética en acuerdo de producción limpia (APL)
 - Reglamento térmico de la vivienda
 - Discusión de la Ley de Eficiencia Energética
 - Estudios de transporte interurbano

- **Cooperación internacional**
 - Alemania (GTZ)
 - Francia
 - GEF

En el sector transporte destacan las siguientes acciones específicas que están siendo llevadas a cabo en el marco del PPEE, a cargo de la Subsecretaría de Transportes, entre las que se encuentra el desarrollo del presente estudio:

- Eficiencia energética en el transporte interurbano de carga
- Eficiencia energética en el transporte privado, de empresas, sector público y Fuerzas Armadas (FFAA)
- Certificación de la eficiencia energética para vehículos motorizados.
- Renovación de flotas vehiculares del sector público.
- Generación y aplicación de modelos de gestión de la eficiencia energética en el transporte de pasajeros

Cabe destacar que ya existen iniciativas en el área de la certificación de electrodomésticos en Chile. Es así como la Resolución Exenta N° 1334 de la Superintendencia de Electricidad y Combustibles (SEC) de Octubre del 2006, establece los protocolos de ensayos de etiquetados de Eficiencia Energética para refrigeradores, congeladores, lámparas incandescentes de filamento de tungsteno para iluminación general y lámpara fluorescente con balasto incorporado para iluminación general. Además, dicha normativa establece las fechas en las cuales todos los productos antes señalados deberán contar con una etiqueta de eficiencia energética y un certificado de aprobación de eficiencia.
ANÁLISIS E IMPLEMENTACIÓN DE UN SISTEMA DE CERTIFICACIÓN DE EFICIENCIA ENERGÉTICA PARA VEHÍCULOS MOTORIZADOS

Mapa de Acción: Sistema Nacional de Eficiencia Energética

MAYÚSCULAS: Línea de acción establecida (con actores, actividades e impacto)
MINÚSCULAS: Línea de acción no establecida

A. Generación de cultura de eficiencia energética
 A-1 Información pública en EE
 A-2 Campaña de sensibilización en medios de comunicación masivos
 A-3 Difusión de las ventajas individuales de la EE para el consumidor
 A-4 Mecanismos de asesoría al consumidor para evaluar su potencial de ahorro energético
 A-5 Programa de educación para el uso eficiente de energía residencial
 A-6 Posicionamiento de la EE en la opinión pública como conducta exigible
 A-7 Instrumentos de reconocimiento público
 A-8 Educación energética
 A-9 Difusión de casos emblemáticos para educación

A-10 INCORPORACIÓN DE EE EN MALLAS CURRICULARES DE CARRERAS UNIVERSITARIAS CLAVES
 A-11 Incorporación de EE en malas currículums de formación técnica
 A-12 Incorporación de EE en el currículo escolar
 A-13 Enfasis de la EE en el sistema nacional de certificación ambiental escolar

B. Formulación de una política nacional de EE
 B-1 Promoción de una visión integrada de la EE que considere calidad, confiabilidad y seguridad
 B-2 EVALUACIÓN DEL POTENCIAL DE EE DEL PAÍS
 B-3 Identificar y remover obstáculos de política pública a la EE
 B-4 Sistema de metas país de EE
 B-5 Política indicativo nacional de metas y acciones de EE
 B-6 Política de normas mínimas de EE
 B-7 Incorporación de EE como fuente en planes de abastecimiento energético
 B-8 Política de fomento a la generación distribuida
 B-9 Políticas de cogeneración y aprovechamiento de energías residuales
 B-10 Incentivar la diversidad de la exploración y explotación de hidrocarburos y otras fuentes energéticas primarias
 B-11 Consideración de la EE en la evaluación de proyectos de inversión pública
 B-12 Política de desarrollo urbano con EE
 B-13 Fomento de RRR (reducir, reciclar y reutilizar)
 B-14 Institucionalidad para la EE
 B-15 Mecanismos de colaboración público-privada para EE

C. Sistema de monitoreo y fiscalización de EE nacional
 C-1 Transparentar las contribuciones de la EE a la reducción de externalidades
 C-2 Sistema de indicadores
 C-3 Sistema de auditoría de EE
 C-4 Fiscalización de reglamentaciones
 C-5 Difusión de resultados e impactos de programas de EE

D. Marco económico
 D-1 Política de precios y cambios libres y transparentes
 D-2 Libertad de comercio energético
 D-3 POLÍTICA DE ARANCELES PAREJOS
 D-4 Política de tributación no discriminatoria
 D-5 Política de precios de combustibles importados que reflejen paridad de importación

E. Marco regulatorio para la eficiencia energética
 E-1 Establecimiento de normas mínimas de EE
 E-2 Establecimiento de estándares nacionales de EE
 E-3 Coordinación y complementación en las regulaciones y legislaciones
 E-4 Ajuste a la EE del marco regulatorio del abastecimiento energético
 E-5 Remoción de las barreras de entrada a la distribución de electricidad y hidrocarburos
 E-6 Incorporar EE, calidad y seguridad a los reglamentos de medias y baja tensión
 E-7 Cogeneración y otros sistemas de integración energética
 E-8 Regulación del uso de estándares mínimos de motores y transformadores
 E-9 Normas mínimas y fomento a la EE en el alumbrado público
 E-10 Regulación de importación de equipos de segunda mano
 E-11 Normas de consumo de energía de equipos en stand-by

F. Sistema de certificación de EE
 F-1 Etiquetado y sellos de EE
 F-2 Información sobre energía en el ciclo de vida de los productos finales
 F-3 Información sobre energía contenida en insumos y materias primas
 F-4 Instrumentos e incentivos económicos, tributarios y financieros para la EE
 F-1 Consideración de la EE en el financiamiento público de proyectos de inversión privada
 F-2 Desarrollo de instrumentos financieros
 F-3 Desarrollo de incentivos
 F-4 Fondo para la inversión en EE
 F-5 Incentivo a las empresas de servicios energéticos (ESCOs)
 F-6 Incentivo a las empresas de servicios energéticos (ESCOs)

G. Investigación y desarrollo energético
 G-1 Investigación y desarrollo en energía no convencional
 G-2 Desarrollo de instrumentos financieros
 G-3 Desarrollo de incentivos
 G-4 Fondo para la inversión en EE
 G-5 Incentivo a las empresas de servicios energéticos (ESCOs)
 G-6 Investigación y desarrollo energético en la empresa

H. Fomento de la EE en la empresa
 H-1 Incorporación de la EE en la Responsabilidad Social Empresarial
 H-2 Programas voluntarios de EE
 H-3 Incorporación de criterios de EE en Acuerdos de Producción Limpia
 H-4 Difusión voluntaria del desempeño energético de las empresas

I. Incorporación a mecanismos internacionales de EE
 I-1 APROVECHAMIENTO DEL PROTOCOLO DE KIOTO Y SIMILARES
 I-2 Preparación para la incorporación de EE como requisito de competitividad internacional
 I-3 Incorporación y difusión de experiencias internacionales

J. Política y programa sectorial de EE en vivienda, edificios y construcción
 J-1 ESTANDARES DE EE PARA VIVIENDA
 J-2 NORMAS DE EE ACORDES CON LA CALIDAD DEL AMBIENTE
 J-3 Programa de reconversión y mejoramiento energético en construcciones e instalaciones existentes
 J-4 Fomento a la gestión energética en edificios
 J-5 Promoción de deconstrucción en lugar de demolición de edificios

K. Política y programa sectorial de EE en transporte
 K-1 Revisión de impuestos específicos al combustible
 K-2 POLÍTICAS DE FOMENTO AL TRANSPORTE PÚBLICO
 K-3 Promoción de medios no motorizados de transporte
 K-4 EE en terminales y estaciones de intercambio modal
 K-5 EE EN GESTIÓN DE TRÁNSITO
 K-6 EE en gestión de flotas de transporte
 K-7 Conducción eficiente de vehículos

L. Política y programa sectorial de EE en uso industrial (minería, agricultura y comercio)
 L-1 Cogeneración de energía eléctrica y energía térmica
 L-2 Utilización de energías térmicas residuales
 L-3 Desarrollo de energías energéticas entre empresas
 L-4 Utilización energética de residuos urbanos e industriales

M. Política y programa sectorial de EE en la transformación de energía
 M-1 Normas de emisión de grandes fuentes
 M-2 Verificación por centros de despacho de carga de disponibilidades, costos y variables de operación de asociados
 M-3 Normas de impacto ambiental para utilización de energía hidráulica

N. Política y programa sectorial de EE en el sector público
 N-1 Remoción de obstáculos al desarrollo público
 N-2 Integración de criterios de EE en política de adquisiciones del Estado
 N-3 Eficiencia energética en edificios públicos existentes
 N-4 Política y programa sectorial de EE en el sector municipal

O. Innovación tecnológica para la EE
 O-1 INVESTIGACIÓN EN EE
 O-2 Desarrollo tecnológico para EE
 O-3 Transferencia tecnológica
 O-4 DESARROLLO DE CASOS EMBLEMÁTICOS PARA TRANSFERENCIA
 O-5 Capacitación en empresas de alta intensidad energética
 O-6 Capacitación en otras empresas y pymes
 O-7 Sistemas de benchmarking de EE entre empresas
 O-8 Sistemas de climatización distrital
 O-9 PARTICIPACIÓN EN REDES INTERNACIONALES DE CONOCIMIENTO

Figura 2.1: Mapa de Acción del Sistema Nacional de Eficiencia Energética

Mapa de acción generado en un Taller de Visión de Desarrollo, el día 7 de enero de 2005, por 30 actores de la eficiencia energética y especialistas en la materia. Los participantes fueron seleccionados por el Comité Convocante del Programa País de Eficiencia Energética, que ha integrado por actores públicos, privados y de la sociedad civil. El taller de visión de desarrollo y el mapa de acción son componentes de la metodología de Innovación Participativa, que facilita la comprensión de los procesos de innovación de alta complejidad y hace posible su gestión eficaz.

DEUMAN
2.1.2 Potencial de mejora de la eficiencia energética por sectores

El año 2004 la Comisión Nacional de Energía (CNE) presenta los resultados de un estudio\(^1\) en el cual se presenta el potencial de ahorro de energía mediante el mejoramiento de la eficiencia energética en distintos sectores del consumo en Chile.

En este estudio se realizó una división sectorial del consumo en los siguientes sectores: Industrial, Minero, Servicios, Transporte y Residencial. A partir de los balances nacionales de energía se elaboró en este estudio la distribución sectorial del consumo de Energía que se presenta en la Tabla 2.1. En esta Tabla se muestra, además, la participación porcentual en el Producto Interno Bruto (PIB) de cada uno de los sectores.

Tabla 2.1: Distribución del consumo de energía y del PIB para distintos sectores de la actividad económica del país para el año 2002

<table>
<thead>
<tr>
<th>Sector</th>
<th>Participación en el Consumo Total Nacional</th>
<th>Participación en el PIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>Minero</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>Servicios</td>
<td>25</td>
<td>64</td>
</tr>
<tr>
<td>Transporte</td>
<td>27</td>
<td>5</td>
</tr>
<tr>
<td>Residencial</td>
<td>19</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Comisión Nacional de Energía, 2004

Una desagregación más fina del sector transporte muestra que el Transporte Caminero representa el 75% del consumo del sector mientras que el transporte marítimo, ferroviario y aéreo representa en conjunto el restante 25%. Esto lleva a que el sector Transporte Caminero constituye el 20% del consumo nacional de energía.

Como resultado de este estudio se obtiene la estimación del potencial de mejoramiento de la Eficiencia Energética sectorial presentado en la Tabla 2.2

\(^{1}\) Comisión Nacional de Energía, CNE. Estimación del Potencial de Ahorro de Energía mediante mejoramiento de la Eficiencia Energética de los distintos Sectores del Consumo en Chile, Octubre 2004.
ANÁLISIS E IMPLEMENTACIÓN DE UN SISTEMA DE CERTIFICACIÓN DE EFICIENCIA ENERGÉTICA PARA VEHÍCULOS MOTORIZADOS

Tabla 2.2: Estimación sectorial del potencial de mejoramiento de la eficiencia energética en Chile para el año 2000

<table>
<thead>
<tr>
<th>Sector/Subsector</th>
<th>Potencial anual de incremento de EE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDUSTRIA</td>
<td></td>
</tr>
<tr>
<td>Papel y Celulosa</td>
<td>4,5</td>
</tr>
<tr>
<td>Siderurgia</td>
<td>2,7</td>
</tr>
<tr>
<td>Petroquímica</td>
<td>2,6</td>
</tr>
<tr>
<td>Cemento</td>
<td>1,9</td>
</tr>
<tr>
<td>Azúcar</td>
<td>2,7</td>
</tr>
<tr>
<td>Pesca</td>
<td>4,5</td>
</tr>
<tr>
<td>Industria Varias</td>
<td>4,1</td>
</tr>
<tr>
<td>MINERIA</td>
<td></td>
</tr>
<tr>
<td>Cobre</td>
<td>0,8</td>
</tr>
<tr>
<td>Salitre</td>
<td>3,2</td>
</tr>
<tr>
<td>Hierro</td>
<td>4,1</td>
</tr>
<tr>
<td>Minas varias</td>
<td>3,2</td>
</tr>
<tr>
<td>SERVICIOS</td>
<td></td>
</tr>
<tr>
<td>Comercial y Público</td>
<td>2,9</td>
</tr>
<tr>
<td>Centros de Transformación</td>
<td></td>
</tr>
<tr>
<td>Electricidad Autoproductores</td>
<td>1,9</td>
</tr>
<tr>
<td>Electricidad Servicio Público</td>
<td>0,3</td>
</tr>
<tr>
<td>Petróleo, Gas Natural</td>
<td>2,6</td>
</tr>
<tr>
<td>TRANSPORTE</td>
<td></td>
</tr>
<tr>
<td>Caminero</td>
<td>2,1</td>
</tr>
<tr>
<td>Ferroviario</td>
<td>1,9</td>
</tr>
<tr>
<td>Aéreo</td>
<td>1,9</td>
</tr>
<tr>
<td>Marítimo</td>
<td>4,5</td>
</tr>
<tr>
<td>RESIDENCIAL</td>
<td>0,9</td>
</tr>
<tr>
<td>Total Nacional</td>
<td>2,0</td>
</tr>
</tbody>
</table>

Fuente: Comisión Nacional de Energía, 2004
2.1.3 Análisis del sector Transporte

Para evaluar la eficiencia energética en un determinado sector se utilizan indicadores de eficiencia energética, que dan cuenta de la energía que se utiliza para una unidad de producto. Estos indicadores pueden ser de tipo económicos, técnico-económicos o técnicos, según sean los objetivos del análisis que se pretende llevar a cabo a través de éstos.

Como indicador de tipo económico está la intensidad energética, que es internacionalmente utilizado para análisis agregados a nivel país o sector económico. La intensidad energética se define como la relación entre el consumo de energía y el nivel de actividad generada, y es expresada en Unidades energéticas por unidades monetarias (producto interno bruto o valor agregado de producto).

Como indicador de tipo técnico-económico, está el consumo específico de energía, que normalmente se utiliza para análisis desagregados a nivel subsectores específicos. Este indicador relaciona el consumo de energía con el nivel de actividad asociado, expresadas ésta en unidades físicas de producto. Como indicador de tipo técnico, está el consumo específico de combustible por trabajo técnico realizado. Este indicador se utiliza para definir la eficiencia o rendimiento de un equipo.

En el sector transporte se suele utilizar como medida de actividad para definir los indicadores de eficiencia energética los pasajeros-km y toneladas-km, para el transporte de pasajeros y de carga, respectivamente. A nivel puramente técnico se utiliza a nivel mundial el consumo de combustible por distancia recorrida (generalmente litros por cada 100 km) o el inverso del valor anterior que representa el rendimiento y se encuentra expresado generalmente en km/litro. Estos dos últimos valores representan el grado de eficiencia energética específica del vehículo mientras que los primeros dan cuenta de la eficiencia del sistema de transporte en general.

De acuerdo a lo presentado anteriormente el 27% de la energía consumida a nivel nacional corresponde al sector transporte. De este porcentaje 75% corresponde a transporte caminero y el 25% restante a transporte marítimo, ferroviario y aéreo. De lo anterior se desprende que el 20% del consumo nacional de energía corresponde al sector de transporte caminero, que engloba tanto el transporte de pasajeros como el de carga. Este cálculo proviene de los balances nacionales de energía realizados por la CNE donde no es posible diferenciar entre el transporte de carga y de pasajeros. Para el sector de transporte caminero la CNE estima que este tiene un potencial de aumento de eficiencia energética del orden de un 2.1%.

Otra fuente interesante de información representan los inventarios de emisiones, en particular los inventarios de emisiones de fuentes móviles. El objetivo de estos inventarios es determinar las emisiones de diferentes contaminantes producidos por el ejercicio de las distintas actividades del sector. Estos inventarios fueron desarrollados por SECTRA a partir de modelos de transporte y se encuentran disponibles para las ciudades más importantes del país.

En estos inventarios se calcula además de la emisión de contaminantes, el consumo de combustible para las distintas categorías vehiculares definidas, por lo que se puede realizar una desagregación del consumo entre el transporte de carga y de pasajeros y para cada una de las tecnologías presentes en las diferentes categorías vehiculares. La Tabla 2.3 y Tabla 2.4 muestran los resultados del consumo de combustible por categoría vehicular definidos en el modelo para el caso del Gran Santiago para el año 2000.

En términos de energía, un análisis de los valores de la Tabla 2.3 refleja que para el año 2000 y de acuerdo al modelo de cálculo de emisiones, aproximadamente el 70% de la energía consumida corresponde a Gasolina y el 30% a Diesel.

La Tabla 2.4 presenta la información de consumo de energía agregada. Se puede apreciar que los vehículos particulares tienen una participación del orden de un 43% del consumo total de energía y que en conjunto con los vehículos comerciales poseen más del 63% de la responsabilidad en el consumo de energía del sector.

Si bien este inventario analizado no representa la situación actual al año 2006 sirve como referencia. En el estudio de actualización del inventario de gases efecto invernadero desarrollado por CONAMA se desprende que el 53% de las emisiones de CO₂, y por lo tanto del consumo de combustible, se originan en la región metropolitana.

Las medidas a tomar para lograr un cambio en la intensidad energética en el transporte deben considerar un análisis como el anterior que permite focalizar los esfuerzos en las categorías que poseen un mayor impacto global.

3 Sectra, “Investigación de Instrumentos de Planificación Ambiental para Ciudades Intermedias” Etapas I, II y III.
4 CONAMA, Gases de Efecto Invernadero (GEI) para el caso de Chile (actualización), Octubre 2004.
Tabla 2.3: Consumo de combustible (CC), año base 2000, Gran Santiago

<table>
<thead>
<tr>
<th>Categoría</th>
<th>CC Ton/año</th>
<th>CC TCal/año</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buses licitados Diesel convencional</td>
<td>77.104,6</td>
<td>840</td>
</tr>
<tr>
<td>Buses licitados Diesel tipo 1</td>
<td>80.714,6</td>
<td>880</td>
</tr>
<tr>
<td>Buses licitados Diesel tipo 2</td>
<td>163.937,8</td>
<td>1.787</td>
</tr>
<tr>
<td>Buses Interurbanos Diesel convencional</td>
<td>919,5</td>
<td>10</td>
</tr>
<tr>
<td>Buses Interurbanos Diesel tipo 1</td>
<td>183,8</td>
<td>2</td>
</tr>
<tr>
<td>Buses Interurbanos Diesel tipo 2</td>
<td>122,6</td>
<td>1</td>
</tr>
<tr>
<td>Buses Rurales Diesel convencional</td>
<td>1.392,8</td>
<td>15</td>
</tr>
<tr>
<td>Buses Rurales Diesel tipo 1</td>
<td>507,2</td>
<td>6</td>
</tr>
<tr>
<td>Buses Rurales Diesel tipo 2</td>
<td>303,1</td>
<td>3</td>
</tr>
<tr>
<td>Camiones livianos Diesel convencional</td>
<td>29.952,9</td>
<td>326</td>
</tr>
<tr>
<td>Camiones livianos Diesel tipo 1</td>
<td>44.950,6</td>
<td>490</td>
</tr>
<tr>
<td>Camiones livianos Diesel tipo 2</td>
<td>7.846,7</td>
<td>86</td>
</tr>
<tr>
<td>Camiones medianos Diesel convencional</td>
<td>33.746,9</td>
<td>368</td>
</tr>
<tr>
<td>Camiones medianos Diesel tipo 1</td>
<td>50.676,5</td>
<td>552</td>
</tr>
<tr>
<td>Camiones medianos Diesel tipo 2</td>
<td>8.802,1</td>
<td>96</td>
</tr>
<tr>
<td>Camiones pesados Diesel convencional</td>
<td>26.680,4</td>
<td>291</td>
</tr>
<tr>
<td>Camiones pesados Diesel tipo 1</td>
<td>35.573,8</td>
<td>388</td>
</tr>
<tr>
<td>Camiones pesados Diesel tipo 2</td>
<td>26.680,4</td>
<td>291</td>
</tr>
<tr>
<td>Particulares Cat. tipo 1</td>
<td>661.893,8</td>
<td>7.413</td>
</tr>
<tr>
<td>Particulares No-Cat</td>
<td>222.017,6</td>
<td>2.487</td>
</tr>
<tr>
<td>Alquiler Cat. tipo 1</td>
<td>130.227,6</td>
<td>1.459</td>
</tr>
<tr>
<td>Alquiler No-Cat</td>
<td>15.327,5</td>
<td>172</td>
</tr>
<tr>
<td>Taxis Col. Cat. tipo 1</td>
<td>22.810,3</td>
<td>255</td>
</tr>
<tr>
<td>Taxis Col. No-Cat</td>
<td>6.446,5</td>
<td>72</td>
</tr>
<tr>
<td>Comerciales Cat. tipo 1</td>
<td>275.312,4</td>
<td>3.083</td>
</tr>
<tr>
<td>Comerciales No-Cat</td>
<td>90.336,5</td>
<td>1.012</td>
</tr>
<tr>
<td>Comerciales Diesel tipo 1</td>
<td>45.586,5</td>
<td>497</td>
</tr>
<tr>
<td>Motocicletas 2 tpos. Convencional</td>
<td>498,1</td>
<td>6</td>
</tr>
<tr>
<td>Motocicletas 4 tpos convencional</td>
<td>3.575,6</td>
<td>4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.064.128,8</td>
<td>22.928</td>
</tr>
</tbody>
</table>

Fuente: SECTRA, Actualización del Inventario de Emisiones

5 Las categorías vehiculares están definidas sobre la base de las normativas de emisiones dictaminadas por el Ministerio de Transporte y Telecomunicaciones
Tabla 2.4: Consumo de combustible (energía) agregada por categoría, año base 2000, Gran Santiago

<table>
<thead>
<tr>
<th>Categoría</th>
<th>CC</th>
<th>CC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCal/año</td>
<td>%</td>
</tr>
<tr>
<td>Buses Licitados</td>
<td>3.507</td>
<td>15,3</td>
</tr>
<tr>
<td>Buses Interurbanos</td>
<td>13</td>
<td>0,1</td>
</tr>
<tr>
<td>Buses Rurales</td>
<td>24</td>
<td>0,1</td>
</tr>
<tr>
<td>Camiones</td>
<td>2.888</td>
<td>12,6</td>
</tr>
<tr>
<td>Particulares</td>
<td>9.900</td>
<td>43,2</td>
</tr>
<tr>
<td>Alquiler</td>
<td>1.630</td>
<td>7,1</td>
</tr>
<tr>
<td>Taxis</td>
<td>328</td>
<td>1,4</td>
</tr>
<tr>
<td>Comerciales</td>
<td>4.592</td>
<td>20,0</td>
</tr>
<tr>
<td>Motocicletas</td>
<td>46</td>
<td>0,2</td>
</tr>
<tr>
<td>Total</td>
<td>22.928</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia
2.2 ANTECEDENTES LEGALES Y NORMATIVOS

En este capítulo se recopilan los antecedentes normativos, legales y regulatorios que serán la base del diseño del sistema de certificación de eficiencia energética vehicular.

Se abordan antecedentes sobre las regulaciones internacionales relacionadas con eficiencia energética; antecedentes sobre el marco institucional y normativo local en relación a temas energéticos y antecedentes sobre la institucionalidad

2.2.1 Antecedentes sobre las regulaciones internacionales relacionadas con eficiencia energética

En la América latina, el desarrollo respecto de normas de Eficiencia Energética ha sido bastante desigual. En primer lugar, México, ha desarrollado un sistema de normas de eficiencia energética, basado en un marco institucional que las promueve a través de su Constitución (Área económica), pero solo se han dictado normas relacionadas con Eficiencia Energética de motores eléctricos y aparatos de refrigeración y eléctricos. Poseen etiquetas de Eficiencia Energética, cuyos estándares han sido tomados de directivas europeas de la década de los años 90. No se encuentran normas relacionadas con la Eficiencia Energética en transporte o vehículos particulares o de transporte de pasajeros o de carga.

En nuestra vecina República Argentina, se encuentran normas de eficiencia energética, de carácter obligatorio, en materia de aparatos de refrigeración. Se encuentra en proceso la implementación de normas de Eficiencia Energética para la generalidad de los aparatos eléctricos y de iluminación. Se desarrolló (copió) un modelo de sello energético, basado en normas Europeas. Existen organismos estatales encargados de ello, como la Secretaría de Energía y una Coordinadora de Eficiencia Energética. No se han desarrollado o implementado normas legales de Eficiencia Energética para vehículos, ya sean particulares o de transporte de carga o pasajeros.

En México y Argentina estas normas se desarrollan tomando como base sus institucionalidades vigentes y sus respectivas Constituciones Políticas, Además todas estas normas de Eficiencia Energética se encuentran íntimamente relacionadas con temas medioambientales.

Respecto de normas europeas de eficiencia energética, podemos decir que sin duda, es en este continente en donde se encuentran las normas más desarrolladas, en todos sus aspectos, incluyendo las de vehículos particulares y de transporte público. Es así como mediante la Directiva 2006/32/CE del Parlamento Europeo y del consejo, de fecha 05 de abril de 2006, se establece un completo marco para el desarrollo de las normas de Eficiencia Energética en
sus más diversos aspectos, considerando el Nº 27 de dicha directiva el sector de carburantes y transporte. Además, en su artículo 3º, dentro del capítulo de las definiciones, en la letra B), establece una definición de Eficiencia Energética; y en la letra F) los “mecanismos de eficiencia energética”.

Este protocolo es obligatorio para todos los países miembros de la Comunidad Económica Europea, y en base a ella, se deben adecuar sus normas legales internas, debiendo llevar a efecto las propuestas de la directiva antes citada, que establece metas y plazos obligatorios, como por ejemplo, reducir el consumo energético en 9 % en un plazo de 9 años. Esta, es una norma de base muy completa, y por lo investigado, única en el mundo, que está estrechamente relacionada con las normas Euro IV (Vigente desde Octubre 2006) y Euro V (Vigente desde Octubre de 2009) respecto de la disminución de contaminantes en vehículos o motores petroleros, por cuanto, y según se pudo comprobar, por el desarrollo de tecnologías menos contaminantes en motores diesel, se ha logrado aumentar la eficiencia de motores en un 5%. Esto se menciona como un dato necesario de tener presente, ya que la Comunidad Económica Europea, en la generación de normas sobre Eficiencia Energética, las ha desarrollado como un tema integral, que afecta a todos los sectores, público y privado, y al uso de todo tipo de carburantes o combustibles, y ello, en directa relación con las normas de protección al medio ambiente, específicamente la reducción de contaminantes emitidos por motores de combustión interna.

Es decir, que la Comunidad Económica Europea, ha establecido un marco normativo obligatorio, muy amplio y coordinado entre Eficiencia Energética y disminución de residuos de combustibles (se hace expresa mención al cumplimiento del Protocolo de Kyoto).

2.2.2 Antecedentes sobre el marco institucional y normativo local en relación a temas energéticos

El sistema normativo específico en nuestro país, respecto de la Eficiencia Energética, es prácticamente inexistente. No existen normas que la regulen, o un marco legal específico para su implementación. Es más, solo a partir de julio del año 2006, se implementaron, a través del Instituto Nacional de Normalización, tres normas chilenas sobre etiquetado de Eficiencia Energética, desarrolladas todas ellas para ser aplicadas a artefactos eléctricos de uso doméstico. En todo caso, estas Normas Técnicas, y no legales, se crean dentro del programa “País de Eficiencia Energética”, y corresponden a las Normas NCH 3000, 3010 y 3020. No obstante ser normas técnicas, no poseen un sustento legal que obligue a su aplicación. La norma legal que podría tratar este tema, en la ley del consumidor (Ley 19.496), que no considera específicamente su utilización para efectuar algún tipo de exigencia o reclamos por parte de los consumidores. Su aplicación queda en el ámbito privado y discrecional de los productores o importadores.
El marco institucional, dentro del cual no se ha encontrado ninguna norma legal de Eficiencia Energética, es prácticamente el mismo en que se debe desarrollar y regular el sector del transporte, a través del Ministerio respectivo, y al que nos referimos en el punto siguiente.

2.2.3 Antecedentes sobre la institucionalidad legal y normativa en cuanto a regulación del sector transporte en Chile

En primer lugar, el marco normativo chileno del sector transporte, tiene su base en la Constitución Política de la República, la que en su artículo 1º establece que el Estado se encuentra al servicio de la persona humana y su finalidad es promover el bien común. Este texto se cita en la totalidad de las leyes dictadas en cualquier ámbito.

También es necesario tener presente los artículos 5º, 7º y 8º de la Constitución, correspondiente a normas supra legales, de carácter general, que deben cumplir todos los órganos del Estado en el desarrollo de sus funciones. Además, al dictar cualquier tipo de normas, se deben respetar los derechos contemplados en el Artículo 19 de la Constitución, en el Capítulo de los Derechos y Deberes constitucionales, debiendo considerar siempre, en estas materias lo dispuesto en los números 8, 9 y 24 del artículo ya citado de nuestra carta fundamental, referidos al derecho a vivir en un medio ambiente libre de contaminación, derecho a la protección de la salud y el derecho de propiedad en sus diversas especies sobre toda clase de bienes corporales o incorpóreos.

Por otra parte, el artículo 38, sobre Bases Generales de la Administración del Estado, establece que una Ley Orgánica Constitucional determinará la organización básica de dicha Administración. Dicha Ley corresponde al Decreto con Fuerza de Ley Nº 1, o también conocida como Ley 18.575 de Bases de la Administración del Estado, la que específicamente en sus artículos 1, 2, 3, 12, 22, establece el marco regulatorio dentro del cual deben actuar los órganos del Estado.

El conjunto armónico de estas y otras disposiciones de carácter general, son las que establecen el marco básico dentro del cual el poder ejecutivo, incluyendo sus respectivos ministerios, deben sujetar su accionar al momento de dictar cualquier tipo de normas.

En estrecha relación con este marco Constitucional y legal, encontramos diversos cuerpos normativos en materia de transporte, los que van conformando las referencias que se deben tener presente en esta materia, y en el caso que nos ocupa, el regido por el Ministerio de Transporte, al momento de dictar algún tipo de norma. Es así como la Ley 18.696, que establece normas sobre importación de vehículos y sobre transporte de pasajeros, en su artículo 3º consagra el Principio de la Libertad de Transporte,
además de entregar al Ministerio de Transporte facultades normativas respecto de la generación de normas técnicas, de seguridad y de contaminación.

Otra norma a considerar, es la Ley 18.059, que en su artículo 1º consagra al Ministerio de Transporte y Telecomunicaciones como el organismo rector del tránsito, y por ende, con la capacidad para proponer políticas de tránsito por calles y caminos de la república.

La Ley 18.290 (Ley de Tránsito), que regula completamente la circulación de todo tipo de vehículos dentro del territorio de la nación, establece en su artículo 2º, una serie de definiciones, entre las cuales contempla la definición de “Homologación”; y su artículo 56, que establece que es el Ministerio de Transporte y Telecomunicaciones quien determina las características técnicas que deben reunir los vehículos que circulen en el territorio nacional.

Ahora bien, respecto de normas que pueden servir como modelo o que es necesario tener en consideración para los efectos de implementar un sistema de Certificación de Eficiencia Energética, y siempre dentro del marco legal recién indicado, encontramos muchas de ellas, que si bien no dicen relación directa con esta materia, van a servir para construir un marco normativo dentro del cual debería insertarse una norma, sea del tipo que sea, de Eficiencia Energética.

Estas normas, junto a las demás antes mencionadas, dicen relación mayoritariamente con Decretos dictados por el Ministerio de Transporte y Telecomunicaciones, tales como:

- Decreto Supremo 156 del año 1990 que establece reglamento para plantas de revisión técnica.
- Decreto Supremo 122 del año 1991, que establece requisitos para vehículos que prestan servicios de locomoción colectiva.
- Decreto Supremo 211 del año 1991, sobre emisiones de vehículos motorizados livianos.
- Decreto Supremo 280 del año 1991, que establece norma sobre emisiones de vehículos motorizados livianos.
- Decreto Supremo 38 del año 1992, respecto de transporte escolar.
- Decreto Supremo 212 del año 1992 que regula Servicios Nacionales de Transporte Público de Pasajeros.
- Decreto Supremo 54 del año 1994, normas de emisiones aplicables a vehículos motorizados medianos.
- Decretos Supremos 54 del año 1997, y 36 del año 2001, que aplican disposiciones sobre homologación de vehículos.
- Decreto Supremo 298, que reglamenta transporte de cargas peligrosas. Su artículo 3º define características de vehículos de este tipo de cargas.
- Oficio Circular N° 58 de 06 de junio de 2001.
• Decreto Supremo 80-2004, Reglamento de Transporte privado de pasajeros.

Para la creación de un sello de eficiencia energética, es conveniente revisar la Ley de Propiedad Industrial, y específicamente el Reglamento del cuerpo normativo conocido como Ley de Marcas, específicamente respecto de dibujos y diseños industriales.

Todas las normas antes citadas, pueden ser consideradas al momento de elaborar una norma y un sello de eficiencia energética, para que esta última se inserte, en forma armónica y eficiente dentro del marco legal y de las atribuciones del Ministerio de Transporte y Telecomunicaciones. Ver Anexo 1 y 2.
2.3 EXPERIENCIA INTERNACIONAL SOBRE PROGRAMAS DE EFICIENCIA ENERGÉTICA

En esta sección se presenta un análisis de los antecedentes hasta ahora recopilados en materia de programas de eficiencia energéticas puestos en práctica en diversos países, los que constituirán, sin lugar a dudas, un antecedente relevante para el diseño del programa local.

2.3.1 Europa

Las regulaciones referentes a la reducción de emisiones de CO₂ y la reducción del consumo de combustibles en vehículos se insertan en las bases del tratado constitutivo de la Unión Europea (UE) ya que éste demanda un consumo racional de los recursos naturales y establece que el uso racional de la energía es uno de los principales instrumentos para alcanzar este objetivo reduciendo la contaminación medioambiental.

Por otra parte los países miembros de la Unión Europea firmaron el protocolo de Kyoto y se comprometieron, por lo tanto, a reducir las emisiones de GEI en el periodo 2008 a 2012 en un 8% en relación al las emisiones del año 1990.

En vista de la importancia que tienen los vehículos de pasajeros como fuente de emisión de CO₂ (del orden de 50% del total de emisiones del sector transporte y 12% del total de emisiones de CO₂ en la UE) de la Comisión de Comunidades Europeas presentó a la UE una estrategia conjunta para la reducción de las emisiones de CO₂ y del consumo de combustibles para este tipo de vehículos. El Consejo sancionó el planteamiento de la Comisión en sus conclusiones de 25 de junio de 1996. Esta estrategia se basa en los siguientes tres instrumentos:

- Lograr compromisos de la industria automovilística para aumentar el ahorro de combustible,
- Entrega de información sobre el consumo de combustible y emisiones de CO₂ de automóviles nuevos y
- Medidas fiscales para reducir las emisiones de CO₂

Como resultado de la aplicación integral de los instrumentos anteriores se espera obtener una emisión específica promedio de 120 gCO₂/km en el año 2008 para los automóviles livianos nuevos que ingresan al mercado europeo. Esta meta se descompone de una reducción al nivel de 140 gCO₂/km a través de las mejoras tecnológicas logradas por los fabricantes de automóviles (primer instrumento) y la diferencia (20 gCO₂/km) a través de los dos instrumentos restantes.

La estrategia de reducción de emisiones de CO₂ de la UE tiene un sistema de seguimiento y control que se formaliza con la Decisión 1753/2000/CE. En esta
decisión se establece que la Comisión debe presentar cada año al Parlamento Europeo y al Consejo de Ministros un informe sobre la eficacia de la estrategia basado en datos de seguimiento realizados por cada uno de los Estados miembros.

La Directiva establece que la medición de las emisiones de CO₂ y el consumo de combustible deben realizarse de acuerdo a la Directiva 93/116/CE. Esta directiva establece los requisitos para homologar las emisiones de CO₂ y el consumo de combustible, las condiciones necesarias para el ensayo, la definición del ensayo en cuanto a los ciclos a utilizar, ajustes dinamométricos, forma de cálculo de las emisiones y del consumo de combustible y otros. En particular se define las extensiones de la homologación. La extensión de la homologación se refiere a la extensión de la homologación a vehículos del mismo tipo u otro diferente, en relación a la masa, masa máxima autorizada, tipo de carrocería, relaciones de transmisión y equipamiento del motor y accesorios, si las emisiones de CO₂ registradas por el servicio técnico no superan en más de 4% el valor de la homologación.

2.3.1.1 Compromisos con la industria automovilística

Sin duda el instrumento de mayor relevancia para lograr la meta de reducción de emisiones de CO₂ lo constituyen los compromisos voluntarios con las asociaciones de fabricantes de automóviles. Se logró establecer compromisos con la Asociación de Fabricantes Europea de Automóviles (ACEA\(^6\)), la Asociación de Fabricantes Japonesa de Automóviles (JAMA\(^7\)) y la Asociación de Fabricantes Coreanos de Automóviles (KAMA\(^8\)).

El objetivo principal de todos estos compromisos fue la reducción de las emisiones específicas medias en un 25% en relación a las del año 1995 para el año 2008 en el caso de ACEA y 2009 en el caso de JAMA y KAMA en los vehículos livianos nuevos que ingresan al parque automotor europeo. Se establece en los compromisos que esta reducción debe ser alcanzada solo mediante la implementación de cambios tecnológicos y en la evolución del mercado asociado a estos cambios tecnológicos.

En términos de emisiones específicas de CO₂ lo anterior se traduce en una reducción de 186 a 140 gCO₂/km, que representa un consumo promedio de 5,8 litros de gasolina por cada 100 km (17,2 km/l) y de 5,25 litros de diesel por cada 100 km (19,0 km/l).

Existen además compromisos intermedios como son:

\(^7\) JAMA: Daihatsu, Fuji Heavy Industries (Subaru), Honda, Isuzu, Mazda, Nissan, Mitsubishi, Suzuki, Toyota.

\(^8\) KAMA: Daewoo Motor Co. Ltd., Hyundai Motor Company, Kia Motors Corporation
ANÁLISIS E IMPLEMENTACIÓN DE UN SISTEMA DE CERTIFICACIÓN DE EFICIENCIA ENERGÉTICA PARA VEHÍCULOS MOTORIZADOS

- Reducción de las emisiones para el año 2003 en el rango de 165 a 170 gCO₂/km.
- Introducción de vehículos eficientes (< 120 g/CO₂/km) en el mercado para el año 2000.
- Evaluación de los resultados en el año 2003 para determinar la factibilidad de lograr una reducción al nivel de 120 gCO₂/km para el año 2012.
- Monitoreo conjunto de los resultados.

2.3.1.2 Evaluación del Instrumento

Los servicios de la Comisión y las tres asociaciones de fabricantes de automóviles elaboraron conjuntamente y acordaron los informes anuales de seguimiento de acuerdo a la Decisión 1753/2000/CE. Las principales conclusiones relativas al período de referencia 1995-2004 son:

- En 2004, las emisiones medias específicas de CO₂ del nuevo parque automovilístico fueron 161 g/km en el caso de ACEA, 168 g/km en el caso de vehículos de procedencia koreana y 170 g/km en vehículo japoneses. En comparación con 1995, las emisiones específicas medias de CO₂ se redujeron 24 g/km (el 13 %) respecto a ACEA, 26 g/km (el 13,3 %) en el caso de JAMA y 29 g/km (el 14,7 %) por lo que se refiere a KAMA. El resultado promedio para toda la flota de automóviles nuevos se puede ver en la siguiente tabla para EU-15⁹ y EU-25¹⁰.

<table>
<thead>
<tr>
<th>Combustible</th>
<th>Seguimiento 2004 EU-15</th>
<th>Seguimiento 2004 EU-25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Registros</td>
<td>gCO₂/km</td>
</tr>
<tr>
<td>Gasolina</td>
<td>7.001.245</td>
<td>170</td>
</tr>
<tr>
<td>Diesel</td>
<td>6.787.834</td>
<td>155</td>
</tr>
<tr>
<td>Gasolina+Diesel</td>
<td>13.789.079</td>
<td>163</td>
</tr>
</tbody>
</table>

Fuente: Normativa Europea

Lo anterior indica que el compromiso intermedio de reducir las emisiones para el año 2003 al rango de 165 a 170 gCO₂/km fue cumplida por las tres asociaciones de fabricantes de automóviles.

- Respecto a 2003, las tres asociaciones redujeron, en 2004, las emisiones específicas medias de CO₂ de sus automóviles matriculados

⁹ Los compromisos reconocidos por la Comisión Europea en 1999/2000 se adoptaron en un momento en que la Unión estaba constituida sólo por 15 Estados miembros y, por esa razón, su alcance geográfico está limitado a EU-15.

¹⁰ La CE cuenta actualmente con 25 miembros (EU-25). Los 10 nuevos miembros de la Comunidad Europea comenzaron a entregar información solo a partir del año 2004.
por primera vez en el mercado de la Unión Europea: ACEA, aproximadamente el 1,2 %, JAMA, el 1,2 % y KAMA, el 6,1 %.

- Desde 1995, las mejoras de eficiencia en el consumo de combustibles en el caso de los vehículos livianos diesel han sido mayores que en los vehículos de gasolina; ese hecho, junto con el aumento sostenido del porcentaje del primer tipo de vehículos en el mercado de turismos nuevos en EU-15, ha contribuido enormemente a los progresos globales realizados hasta ahora\(^\text{11}\). A la vista de esa tendencia, es preciso seguir mejorando el comportamiento de los vehículos diesel en lo que respecta a las emisiones de contaminantes atmosféricos, como expuso la Comisión en su propuesta EURO 5\(^\text{12}\).

- ACEA y JAMA siguieron en 2004 una tendencia ininterrumpida de reducción de emisiones de CO\(_2\), aunque sus resultados recientes han sido inferiores a las reducciones anuales que se lograron en los primeros años de compromiso. ACEA ya alcanzó en 2000 el intervalo de referencia intermedio previsto para 2003, y desde ese año está en el punto más bajo de ese intervalo. JAMA se encuentra, desde 2002, en el intervalo de referencia intermedio. KAMA ha realizado considerables progresos y ya se sitúa en el intervalo de referencia intermedio previsto para 2004 (165-170 gCO\(_2\)/km).

- Para alcanzar el objetivo final de 140 g de CO\(_2\)/km debe realizarse aún una labor importante porque hay que aumentar el índice anual medio de reducción de las tres asociaciones. En caso de que a lo largo de todo el período 1995-2008/2009, el ritmo de mejora se mantuviera constante, se conseguiría una reducción de alrededor de 3,5 g de CO\(_2\)/km por año, equivalente a aproximadamente el 2 % anual. En los años que quedan hasta 2008/2009, los índices de reducción anual deben ahora cifrarse en una media del 3,3 % en el caso de ACEA, del 3,5 % en el de JAMA y del 3,3 % en el de KAMA. Desde un primer momento se previó que el índice medio de reducción iba a ser más elevado en los últimos años.

- Si bien la evolución de las emisiones medias globales de CO\(_2\) de los vehículos nuevos registrados es a la baja, los índices de reducción varían según los países.

- Como conclusión de la evaluación global de las asociaciones en relación a la factibilidad de lograr la meta de 120 gCO\(_2\)/km para el año 2012 las asociaciones expresan que si bien sería técnicamente factible lograr la meta, esta tendría un costo excesivo tanto para los fabricantes como para los consumidores y consideran que se debe adoptar un enfoque

\(^{11}\) Los incentivos fiscales para el combustible diesel en la mayoría de los Estados miembros han contribuido probablemente al aumento del porcentaje de ese tipo de vehículos y a la reducción correspondiente de las emisiones medias específicas de CO\(_2\).

integrado en lugar de uno centrado exclusivamente en la tecnología automovilística.

2.3.1.3 Divulgación de información a los compradores

El instrumento de divulgación de información a los compradores se formaliza con la Directiva 1999/94/EC del Parlamento Europeo y del Consejo relativa a la información sobre el consumo de combustible y sobre las emisiones de CO$_2$ entregada al consumidor en vehículos comerciales nuevos.

El objetivo de esta Directiva es garantizar que los consumidores dispongan de información sobre el consumo de combustible de los vehículos comerciales en venta o disponibles para arriendo y así cumplir con entregar información relevante para la toma de decisión al momento de comprar un vehículo o arrendarlo.

La información entregada a los consumidores debe consistir en, al menos:

- Una etiqueta de consumo de combustible para todos los vehículos nuevos que se expongan en los puntos de venta.
- Un cartel (o pantalla) que muestre el consumo oficial de combustible y los datos sobre las emisiones de CO$_2$ de todos los modelos nuevos de turismos de la exposición a la venta o en alquiler en el concesionario o a través del mismo.
- Una guía sobre el consumo de combustible y emisiones de CO$_2$.
- Todos los folletos elaborados para cada vehículo deben incluir el consumo oficial de combustible y datos específicos sobre las emisiones de CO$_2$ del modelo del que se trate.
- Además, algunas organizaciones de Estados miembros de la CE mantienen páginas Web que presentan el consumo oficial de combustible y las emisiones de CO$_2$ de todos los modelos de turismos nuevos existentes en el mercado.

La Directiva 1999/94/EC establece además que cada miembro de la comunidad debe designar la/los autoridades competentes responsables de la aplicación y funcionamiento del sistema de información al consumidor y que este debe enviar a la Comisión un informe sobre la eficacia de las disposiciones de la Directiva. La evaluación global de este instrumento se realiza en base a estos informes.

El Anexo I de la Directiva establece los siguientes requerimientos mínimos o estándares que debe cumplir la etiqueta de consumo de combustible y emisiones de CO$_2$:

1. Sean conformes al formato normalizado con objeto de permitir un mejor reconocimiento por parte de los consumidores.
2. Tengan un tamaño de 297 mm × 210 mm (A4).
3. Contengan una referencia al modelo y al tipo de combustible del vehículo al que se destinen.
4. Contengan el valor numérico del consumo oficial de combustible y de las emisiones específicas oficiales de CO₂. El valor del consumo oficial de combustible deberá expresarse en litros por cada 100 kilómetros (l/100 km), kilómetros por litro (km/l) o una combinación adecuada de estos valores, y la cifra se redondeará a un decimal. Las emisiones específicas oficiales de CO₂ deberán expresarse redondeándolas a la unidad más próxima en gramos por kilómetro (g/km). Estos valores podrán expresarse en unidades distintas (galones y millas) siempre que ello sea compatible con lo dispuesto en la Directiva 80/181/CEE (1).
5. Contengan el texto siguiente relativo a la disponibilidad de la guía sobre consumo de combustible y emisiones de CO₂: «En todos los puntos de venta puede obtenerse gratuitamente una guía sobre el consumo de combustible y las emisiones de CO₂ en la que figuran los datos de todos los modelos de automóviles de turismo nuevos.».
6. Contengan el texto siguiente: «El consumo de combustible y las emisiones de CO₂ no sólo dependen del rendimiento del vehículo; también influyen el comportamiento al volante y otros factores no técnicos. El CO₂ es el principal gas de efecto invernadero responsable del calentamiento del planeta.»

La Directiva establece los vendedores de automóviles deben poner la etiqueta sobre todos los automóviles o en algún lugar próximo a cada automóvil nuevo que este para la venta.

El Anexo II de la Directiva establece los siguientes requerimientos mínimos o estándares que debe cumplir la guía de consumo de combustible y emisiones de CO₂:

1. Una lista, elaborada anualmente, de todos los modelos de turismos nuevos puestos en venta en los Estados miembros, clasificados por marcas y por orden alfabético. Si en un Estado miembro se actualiza la guía más de una vez al año, ésta deberá incluir la lista de todos los vehículos nuevos existentes en la fecha de publicación de la actualización.
2. Para cada modelo que aparezca en la guía, el tipo de combustible, el valor numérico del consumo oficial de combustible y las emisiones oficiales específicas de CO₂. El consumo oficial de combustible deberá expresarse en litros por cada 100 kilómetros (l/100 km), kilómetros por litro (km/l) o una combinación adecuada de estos valores, y la cifra se redondeará a un decimal. Las emisiones específicas oficiales de CO₂ deberán expresarse redondeándolas con precisión de una unidad en gramos por kilómetro (g/km). Estos valores podrán expresarse en unidades distintas (galones y millas) siempre que ello sea compatible con lo dispuesto en la Directiva 80/181/CEE.
3. Una lista destacada de los 10 modelos de turismos nuevos de mayor eficiencia energética ordenados de menor a mayor emisión específica de...
CO₂ para cada tipo de combustible. En la lista deberá aparecer el modelo, el valor numérico del consumo oficial de combustible y de las emisiones específicas oficiales de CO₂.

4. Consejos a los usuarios de vehículos en el sentido de que el uso correcto y el mantenimiento regular del vehículo, así como el modelo de conducir, con precauciones como las de no conducir de manera agresiva, moderar la velocidad, prever el frenado, mantener la presión correcta de los neumáticos, reducir los períodos de ralentí, evitar la sobrecarga del vehículo, etc. mejoran el consumo de combustible y reducen las emisiones de CO₂ de su vehículo.

5. Una explicación de las consecuencias de las emisiones de gases de efecto invernadero, el riesgo de cambio climático y la influencia de los automóviles, así como una referencia a los distintos tipos de combustibles a disposición del consumidor y sus repercusiones en el medio ambiente conforme a la evidencia científica y los requisitos legislativos más recientes.

6. Una referencia al objetivo de la Comunidad sobre el promedio de emisiones de CO₂ de los turismos nuevos y la fecha en que debe lograrse tal objetivo.

7. Una referencia a la guía de consumo de combustible y emisiones de CO₂ de la Comisión en Internet, cuando esté disponible.

El Anexo III de la Directiva establece los siguientes requerimientos mínimos o estándares que debe cumplir el cartel de consumo de combustible y emisiones de CO₂:

1. Tener un tamaño mínimo de 70 cm × 50 cm.
2. La información deberá ser de fácil lectura.
3. Los modelos de turismos deberán agruparse e incluirse en listas aparte según el tipo de combustible (por ejemplo, gasolina o gasóleo). Dentro de cada tipo de combustible, los modelos deberán figurar por orden creciente de emisiones de CO₂, de forma que el modelo que oficialmente consuma menos combustible aparezca en el primer lugar de la lista.
4. Para cada modelo de turismo de la lista deberá precisarse la marca, el consumo oficial de combustible y las emisiones específicas oficiales de CO₂. El consumo oficial de combustible deberá expresarse en litros por cada 100 kilómetros (l/100 km), kilómetros por litro (km/l) o una combinación adecuada de estos valores y la cifra se redondeará a un decimal. Las emisiones específicas oficiales de CO₂ deberán expresarse redondeándolas con precisión de una unidad en gramos por kilómetro (g/km). Estos valores podrán expresarse en unidades distintas (galones y millas) siempre que ello sea compatible con lo dispuesto en la Directiva 80/181/CEE. A continuación se propone un posible formato:
ANÁLISIS E IMPLEMENTACIÓN DE UN SISTEMA DE CERTIFICACIÓN DE EFICIENCIA ENERGÉTICA PARA VEHÍCULOS MOTORIZADOS

<table>
<thead>
<tr>
<th>Tipo de Combustible</th>
<th>Clasificación</th>
<th>Modelo</th>
<th>Emisiones de CO₂</th>
<th>Consumo de combustible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gasolina</td>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel</td>
<td>1.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Incluir el siguiente texto en relación con la disponibilidad de la guía de consumo de combustible y emisiones de CO₂: «En todos los puntos de venta puede obtenerse gratuitamente una guía sobre el consumo de combustible y las emisiones de CO₂ en la que figuran los datos de todos los modelos de automóviles de turismo nuevos.».

6. Incluir el texto siguiente: «El consumo de combustible y las emisiones de CO₂ no sólo dependen del rendimiento del vehículo; influyen también el comportamiento al volante y otros factores no técnicos. El CO₂ es el principal gas de efecto invernadero responsable del calentamiento del planeta.».

7. Actualizarse totalmente al menos cada seis meses. En el intervalo entre dos actualizaciones, los vehículos nuevos se añadirán al final de la lista.

Este anexo fue modificado mediante la Directiva 2003/73/EC permitiendo la posibilidad de utilizar herramientas de comunicación modernas (pantallas electrónicas) en reemplazo de los posters.

En la Directiva se establece que todos los impresos de promoción deben incluir los datos oficiales de consumo de combustible y de las emisiones específicas oficiales de CO₂ de los vehículos que se refieran. El Anexo IV de la Directiva establece los siguientes requerimientos mínimos que debe responder dicha información:

1. Ser de fácil lectura y al menos tan visible como la información principal que se recoge en los impresos de promoción.
2. Ser fácilmente comprensible incluso tras una lectura superficial.
3. Deberán suministrarse los datos relativos al consumo oficial de combustible de todos los modelos del vehículo a los que se refieran los impresos de promoción. Si se especificara más de un modelo, podrán incluirse los datos del consumo oficial de combustible de todos los modelos especificados o la clasificación de mayor o menor consumo. El consumo de combustible se expresará en litros por cada 100 kilómetros (l/100 km), kilómetros por litro (km/l) o una combinación adecuada de ambos valores. Todos los datos numéricos deberán expresarse con precisión de un decimal. Estos valores podrán expresarse en unidades...
distintas (galones y millas) siempre que ello sea compatible con lo dispuesto en la Directiva 80/181/CEE.

Si los impresos de promoción mencionan únicamente la marca y no hacen referencia a ningún modelo concreto, no será preciso suministrar datos sobre el consumo de combustible.

2.3.1.4 Evaluación del Instrumento

En esta sección se analiza la efectividad de la Directiva 1999/94/EC en relación al de conseguir una reducción de las emisiones específicas de CO₂. Este análisis se basa principalmente en un estudio realizado el año 2004 y presentado el 2005 por la CE\(^{13}\), que tuvo como objetivo evaluar la eficacia de la Directiva 1999/94/EC y estudiar posibles opciones para su mejora, en los reportes de las evaluaciones anuales realizadas por la Comisión y en un estudio realizado por la Agencia Aeroespacial Alemana\(^{14}\) (DLR) donde se evaluó si la reducción de emisiones logradas entre los años 1995 y 2003 se deben a mejoras tecnológicas proveniente de parte de los fabricantes de automóviles o de otros motivos como por ejemplo de un cambio en el comportamiento de compradores.

En relación a la adopción y aplicación de la Directiva como Ley de Estado en cada uno de los países miembros se informa que todos los países han informado de las medidas adoptadas para incorporar a su ordenamiento interno la Directiva 1999/94/CE relativa a la información sobre el consumo de combustible y las emisiones de CO₂ facilitada al consumidor al comercializar turismos nuevos. Esto se refiere tanto a los países miembros de EU-15 como EU-25. Lo anterior implica que todos los países deben entregar un reporte anual de evaluación de aplicación de la Directiva.

En relación al diseño de la etiqueta de consumo de combustible y emisiones de CO₂ se determina que, dado que la Directiva solo establece estándares mínimos para esta, se han desarrollado diferentes opciones. Las diferentes opciones se diferencian en la cantidad de información adicional a la establecida en la Directiva 1999/94/EC. La información entregada va desde una información mínima relacionada con el consumo de combustible y emisiones de CO₂ (como en el caso de Alemania) a contener información relativa por ejemplo al costo del combustible, impuestos aplicados a los automóviles, emisiones de contaminantes tóxicos, especificaciones técnicas del vehículos, estándares de seguridad y otros.

\(^{14}\) DLR German Aerospace Centre, Institute of Transport Research, “Preparation of the 2003 review of the commitment of car manufacturers to reduce CO₂ emissions from M1 vehicles - Final report of Task A: Identifying and assessing the reasons for the CO₂ reductions achieved between 1995 and 2003” - Report to the European Commission, December 2004
La Figura 2.2 muestra, a modo de ejemplo, la etiqueta obligatoria utilizada en España y Alemania las cual contiene información mínima de acuerdo a la Directiva 1999/94/EC.

En algunos países se ha implementado en la etiqueta además un sistema de categorías de eficiencia energética comparativo y gráfico de los vehículos basados en el consumo de combustible o en las emisiones específicas de CO₂. Esta iniciativa se basa en la idea de que la información numérica por sí sola, tanto del consumo de combustible como de las emisiones específicas de CO₂, no tiene mucho significado para la mayoría de los compradores y por lo tanto tiene poca influencia en la decisión de compra de un vehículo más eficiente.

El origen de esta iniciativa proviene de las categorías de eficiencia energética utilizada en el etiquetado de los artefactos de Línea Blanca de uso doméstico. Las categorías se subdividen además según la metodología de clasificación en:

1. Método de comparación absoluta que significa que las categorías se definen por rangos específicos de emisiones específicas de CO₂ (g/km) o de consumo de combustible (l/100 km o km/l) válidos para toda la oferta de vehículos nuevos a la venta. No se utiliza otro tipo de segmentación por tamaño, potencia, peso u otro. Los países que tienen implementado este sistema son Bélgica, Dinamarca, Portugal y el Reino Unido. La Figura 2.3 muestra las etiquetas para estos países.

2. Método de comparación relativa que introduce adicionalmente una segmentación por tamaño del vehículo. Los países que utilizan este sistema son Holanda y España en forma opcional y Suiza. La Figura 2.4 muestra las etiquetas para Holanda y España.

Figura 2.2: Etiquetas de consumo de combustible y emisiones específicas de CO₂ utilizadas en España y Alemania. (Fuente: Estudio DLR)
Independiente del método de comparación utilizado se puede ver que el diseño de estas etiquetas no es uniforme y que contiene distinto número de categorías según el país y que la información adicional entregada no es equivalente. Bélgica, Dinamarca, España y Holanda tienen 7 categorías mientras que el Reino Unido utiliza 6 y Portugal solo 4. Estas categorías no son además comparables entre sí ya que corresponden a distintos rangos de emisiones de CO₂ o de consumo de combustible. La Figura 2.5 muestra la diferencia de los rangos definidos en las categorías de eficiencia energética para los países de Bélgica, Dinamarca y el Reino Unido. El punto anterior es de importancia en la UE ya que existe mucha movilidad entre los países miembros y no se cuenta con un sistema de etiquetado uniforme creando problemas en la interpretación y, por lo tanto, restándole significado e impacto real en la reducción de emisiones.
Figura 2.3: Etiqueta de Información de Bélgica, Dinamarca, Portugal y el Reino Unido.
Fuente: Estudio ADAC e.V.
ANÁLISIS E IMPLEMENTACIÓN DE UN SISTEMA DE CERTIFICACIÓN DE EFICIENCIA ENERGÉTICA PARA VEHÍCULOS MOTORIZADOS

Figura 2.4: Etiqueta de Información de España y Holanda.
Fuente: Estudio ADAC e.V.

Figura 2.5: Definición de las bandas de emisiones en la definición de categorías de eficiencia energética para Bélgica, Dinamarca y el Reino Unido.
Fuente: Estudio ADAC e.V.

En relación a las demás fuentes de información se concluye que tanto las guías de información como los impresos de promoción son, entre otras, fuentes de
información en el momento de la decisión de compra de un vehículo nuevo y que el cartel de información no tiene ninguna relevancia en la decisión de compra. La efectividad de la guía se encuentra cuestionada por algunos miembros debido a los altos costos que significa para los proveedores y se propone como solución la posibilidad de mantener una guía en Internet.

Como resultado general del análisis se desprende que, en general, la eficacia de la Directiva no es muy alta dado que no se ha observado que haya tenido un impacto significativo en las decisiones de los consumidores. Las opciones más prometedoras de mejora de la legislación actual con vistas a aumentar la sensibilización de los consumidores respecto a la eficiencia de los combustibles y las emisiones de CO₂ se refieren a:

1. Introducción de categorías de eficiencia energética en la etiqueta,
2. Diseño de una etiqueta simple centrada en el objetivo de la Directiva que son el consumo de combustible y las emisiones de CO₂,
3. Incluir costos de operación por cantidad determinada de km, que pueden ser, por ejemplo, los km promedio por año para este tipo de vehículos,
4. Incluir posibles ventajas taxativas relativas al consumo de combustible y emisiones de CO₂,
5. Armonización del diseño de la etiqueta en los distintos países miembros,
6. Limitación de las fuentes de información a las efectivamente relevantes.

Se postula además que para en la definición de las distintas categorías de eficiencia energética el método de comparación absoluto es el más adecuado ya que tiene mas sentido para los compradores. La Figura 2.6 muestra una proposición de etiqueta de acuerdo a las conclusiones anteriores.

Sobre la base de las evaluaciones anuales realizadas y como parte de la revisión general de la estrategia de reducción de las emisiones de CO₂ de los vehículos, la Comisión analizará en 2006 la necesidad de presentar una propuesta de modificación para aumentar la eficacia de la Directiva.
2.3.1.5 Medidas Fiscales

Como tercer instrumento de la estrategia de la Comunidad Europea para disminuir las emisiones de CO₂, de los vehículos livianos de pasajeros nuevos al nivel de 120 gCO₂/km a mas tardar en el año 2010, se consideró la aplicación de medidas fiscales.
Estas medidas tienen como objetivo cubrir la brecha entre el objetivo global y el compromiso logrado con las asociaciones de fabricantes de automóviles. Así se cree en abril del año 2000, un grupo de expertos cuyo objetivo general a corto plazo es ayudar a la Comisión en la elaboración de un marco fiscal para las medidas favorecedoras de la reducción de las emisiones de CO₂ de los vehículos livianos.

Como resultado de este trabajo se redactó en el año 2002 un Comunicado de la Comisión, el cual se puso a discusión pública y posterior adopción en el año 2005 como una propuesta para la elaboración de una Directiva del Consejo referente a introducir parcialmente las emisiones de CO₂ en el cálculo de los impuestos aplicables a los automóviles. Todo esto con el objetivo de influenciar la decisión de compra de los compradores hacia automóviles de un menor consumo específico de combustible.

Este tipo de medidas quedaron demostradas con el ejemplo del impuesto a la compra o registro de vehículos nuevos BMP en Holanda; el año 2002 se introdujo un incentivo por la compra de vehículos de las categorías de eficiencia energética A y B, producto de este incentivo los registros de nuevos automóviles de la categoría aumentaron de 0,3% en el 2001 a 3,2% en el 2002 para autos de la categoría A y de 9,5% a 16,1% en automóviles de la categoría B. Este incentivo duró solamente un año y después de su eliminación el registro de este tipo de vehículos retorno a los valores originales.

2.3.1.6 Otras Medidas Conexas

Como resultado de los estudios realizados en relación a la efectividad de la Directiva 1999/94/EC que representa la estrategia de la CE para la reducción de emisiones de CO₂ se han vislumbrado una serie de medidas complementarias que permitirían lograr la meta deseada. Estas propuestas provienen de distintos proyectos realizados en el contexto del cambio climático. Estas medidas serán solo enunciadas aquí:

1. Incorporación de vehículos comerciales livianos a la Directiva de reducción de emisiones.
2. Incorporar el consumo adicional de emisiones de CO₂ y de consumo de combustible por el uso de sistemas de aire acondicionado y sistemas de calefacción auxiliares.
3. Uso de dispositivos para la reducción del consumo de combustible que pueden afectar directamente o no la conducción:
 - Indicadores de consumo electrónicos en el automóvil
 - Neumáticos de baja resistencia
 - Aceites de alta lubricidad
2.3.2 Asia

Las dos organizaciones de fabricantes de automóviles más importantes de Asia son las ya mencionadas JAMA y KAMA, que representa a la industria japonesa y coreana, respectivamente. En párrafos precedentes se vio como estas organizaciones llegaron a acuerdos con acuerdos con autoridades europeas en el sentido de reducciones de emisiones de CO$_2$ y, en consecuencia, aumentos de rendimientos en los modelos asiáticos que se comercializan en Europa.

En el año 1998 se fijan en Japón metas de economía de combustible y emisiones de CO$_2$, para los años 2010 y 2015. En la Figura 2.7 y la Figura 2.8, se grafican estas metas y se comparan con los promedios del año 1995 y 2002, respectivamente. De las figuras señaladas, se infiere un aumento esperado en los rendimientos, entre los años base y las metas, que alcanzan un 22,8% y un 13,2% para vehículos de pasajeros y camiones livianos, respectivamente, que utilizan gasolina. Asimismo, se observan aumentos esperados en los rendimientos esperados de camiones y buses que utilizan diesel, de 12,2% y 12,5% respectivamente.

![Figura 2.7: Metas de economía de combustible para el 2010.](Fuente: JAMA)

![Figura 2.8: Metas de economía de combustible para el 2015.](Fuente: JAMA)
En el sitio web oficial de la JAMA se puede apreciar la gran oferta de vehículos de bajas emisiones y consumo de combustible, publicada en septiembre del 2006. Como resultados de los esfuerzos de las compañías miembro de la JAMA, en el 2004 un 85% de los vehículos vendidos correspondió a aquellos denominados de alta eficiencia energética, con un rendimiento promedio de 15,4 km/lt, lo que supera la meta establecida para el año 2010 (15,1 km/lt). En la Figura 2.9 se muestra en forma gráfica cómo ha ido evolucionando este parámetro desde 1995, cuando el rendimiento promedio era 12,5 km/lt.

![Figura 2.9: Rendimiento promedio de autos vendidos en Japón](http://www.jama.or.jp/eco/eco_car/info/index.html)

La información a los usuarios se realiza principalmente a través del sitio web de JAMA, donde se reportan las especificaciones ambientales de cada uno de los modelos ofrecidos por los fabricantes miembros de la organización15.

En abril del 2004, se introduce un sistema de etiquetado que tiene por objeto de informar a los usuarios respecto de la eficiencia energética de los vehículos que se ofrecen en el mercado. El sistema consiste en introducir un sello a aquellos modelos que cumplen con la meta establecida para el 2010 y aquello que la exceden en un 5%. En abril del año 2006 se introduce un nuevo sello para aquellos modelos que exceden la meta del 2010 en un 10% y en un 20%, respectivamente.

El otorgamiento de estos sellos de eficiencia energética van acompañados de incentivos de tipo económico, consistentes en una rebaja de impuestos (Green Tax Scheme), de acuerdo a lo indicado en la Tabla 2.6.

15 http://www.jama.or.jp/eco/eco_car/info/index.html
ANÁLISIS E IMPLEMENTACIÓN DE UN SISTEMA DE CERTIFICACIÓN DE EFICIENCIA ENERGÉTICA PARA VEHÍCULOS MOTORIZADOS

Tabla 2.6: Incentivos Económicos

<table>
<thead>
<tr>
<th>Tipo de Vehículo</th>
<th>Emisiones</th>
<th>Economía de Combustible</th>
<th>Reducciones</th>
<th>Impuesto Vehicular</th>
<th>Impuesto a la Venta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livianos de Pasajeros</td>
<td>**** Emisiones menores al 75% Estándar 2005</td>
<td>+ 20%</td>
<td>50%</td>
<td>Deducible y 300,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>+ 10%</td>
<td>25%</td>
<td>Deducible y 150,000</td>
<td></td>
</tr>
<tr>
<td>Vehículos Pesados</td>
<td>+ 10% Estándar 2015 NOx o PM</td>
<td>Cumple Meta</td>
<td>-</td>
<td>2% reducción</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cumple estándares 2015</td>
<td>Cumple Meta</td>
<td>-</td>
<td>1% reducción</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: JAMA

Como se señaló en secciones precedentes, JAMA suscribe un acuerdo con la Unión Europea en el sentido de reducir las emisiones de CO₂ promedio en vehículos livianos de pasajeros que se comercializan en 15 países miembros de la UE, a 140 g/km o menos en el año 2009. Como respuesta a este acuerdo, en el año 2004 las emisiones promedio fueron 170 g/km, lo que significa un 12% de reducción en relación al año 1999.

En Corea existen tres programas de eficiencia energética a saber: el programa de estándares y etiquetado de eficiencia energética; el programa de ahorro energético en estado “stand by” y el programa de certificación de alta eficiencia.

Bajo programas de estándares y etiquetado de eficiencia energética, diversos productos de alto consumo energético, son etiquetados y ranqueados en un rango de 5 niveles de consumo en energético. Con esto se persigue informar al consumido y estimular la compra de aquellos con mayor eficiencia energética. Todos los fabricantes coreanos están sujetos a este programa, destacando productos tales como automóviles, refrigeradores, equipos de aire acondicionado, entre otros.

El programa de ahorro de energía en estado stand by, tiene por objeto ahorrar energía en esta situación de no operación directa de diversos productos y equipos (17 en total, entre los que se encuentran los computadores. Monitores, impresoras, reproductores de DVD, hornos microondas, etc).
El programa de certificación de alta eficiencia persigue identificar productos y equipos que tienen una eficiencia energética superior a ciertos estándares. En la actualidad este programa incluye 33 tipos de productos, entre los que se encuentran motores de inducción, refrigeradores, calderas, entre otros.

En la Figura 2.10 y en la Figura 2.11, se presentan los sellos de eficiencia energética con sus cinco niveles y el sello que certifica alta eficiencia energética, respectivamente.

Figura 2.10: Sello de eficiencia energética de 5 niveles
Fuente: Kemko

Figura 2.11: Sello para certificar alta eficiencia energética
Fuente: Kemko

Para el caso de automóviles, los cinco grados de eficiencia energética quedan definidos según la Tabla 2.7, para el caso de vehículos de pasajeros y la Tabla 2.8 presenta el caso de los vehículos multipropósito medianos de pasajeros.
Tabla 2.7: Grados de eficiencia energética para vehículos de pasajeros

<table>
<thead>
<tr>
<th>Desplazamiento (CC)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bajo 800</td>
<td>sobre 23,6</td>
<td>23,5~20,6</td>
<td>20,5~17,6</td>
<td>17,5~14,6</td>
<td>bajo 14,5</td>
</tr>
<tr>
<td>Sobre 800 – Bajo 1.100</td>
<td>sobre 20,5</td>
<td>20,4~17,9</td>
<td>17,8~15,3</td>
<td>15,2~12,7</td>
<td>bajo 12,6</td>
</tr>
<tr>
<td>Sobre 1.100 - Bajo 1.400</td>
<td>sobre 17,4</td>
<td>17,3~15,2</td>
<td>15,1~13,0</td>
<td>12,9~10,8</td>
<td>bajo 10,7</td>
</tr>
<tr>
<td>Sobre 1.400 – Bajo1.700</td>
<td>sobre 16,5</td>
<td>16,4~14,4</td>
<td>14,3~12,3</td>
<td>12,2~10,2</td>
<td>bajo 10,1</td>
</tr>
<tr>
<td>Sobre 1.700 – Bajo 2.000</td>
<td>sobre 14,3</td>
<td>14,2~12,5</td>
<td>12,4~10,7</td>
<td>10,6~8,9</td>
<td>bajo 8,8</td>
</tr>
<tr>
<td>Sobre 2.000 – Bajo 2.500</td>
<td>sobre 11,2</td>
<td>11,1~9,8</td>
<td>9,7~8,4</td>
<td>8,3~7,0</td>
<td>bajo 6,9</td>
</tr>
<tr>
<td>Sobre 2.500 – Bajo 3.000</td>
<td>sobre 9,4</td>
<td>9,3~8,2</td>
<td>8,1~7,0</td>
<td>6,9~5,7</td>
<td>bajo 5,7</td>
</tr>
<tr>
<td>Sobre 3.000</td>
<td>sobre 8,6</td>
<td>8,5~7,5</td>
<td>7,4~6,4</td>
<td>6,3~5,3</td>
<td>bajo 5,2</td>
</tr>
</tbody>
</table>

Nota: Unidades en km/l
Fuente: Kemko

Tabla 2.8: Grados de eficiencia energética para vehículos multipropósito medianos de pasajeros

<table>
<thead>
<tr>
<th>Desplazamiento (CC)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bajo 1.500</td>
<td>Sobre 14,8</td>
<td>14,7~12,9</td>
<td>12,8~11,0</td>
<td>10,9~9,1</td>
<td>bajo 9,0</td>
</tr>
<tr>
<td>Sobre 1.500 ~ Bajo 2.000</td>
<td>sobre 13,3</td>
<td>13,2~11,6</td>
<td>11,5~9,9</td>
<td>9,8~8,2</td>
<td>Bajo 8,1</td>
</tr>
<tr>
<td>Sobre 2.000</td>
<td>sobre 12,2</td>
<td>12,1~10,6</td>
<td>10,5~9,0</td>
<td>8,9~7,4</td>
<td>Bajo 7,3</td>
</tr>
</tbody>
</table>

Nota: Unidades en km/l
Fuente: Kemko

Existen organizaciones autorizadas para llevar a cabo los test a través de los cuales se determina el grado de eficiencia energética. Estas organizaciones son: National Institute of Environmental Research; Korea Institute of Energy Research; Korea Automotive Performance Test Research y Korea Automotive Technology Institute.

2.3.3 Estados Unidos

El programa de economía de combustible en Estados Unidos está liderado por el Departamento de Energía de ese país, la estrategia de economía de combustible es la reducción de combustibles basados en el petróleo. Básicamente, el objetivo no solo corresponde a reducir emisiones sino que a reducir la dependencia en los países productores de petróleo.

La metodología para reducir el consumo de combustibles fósiles consiste en:
Incrementar el conocimiento del consumidor en los beneficios de la economía de combustible.

Proclamar coaliciones de ciudades limpias con recursos para llevar información a un nivel local.

Proclamar información a los consumidores y dueños de flotas para ayudarlos a considerar la economía de combustible en el momento de la compra.

El programa de Ciudad Limpia (Clean Cities) utiliza, para alcanzar las metas anteriores, una serie de herramientas para distribuir información a los consumidores, sobre como comprar un auto nuevo o uno usado.

- Clean Cities Fuel Economy Toolkit: Un conjunto de recursos y materiales desarrollados para ayudar las coaliciones de las ciudades limpias a promover economía en vehículos que utilizan combustibles alternativos.
- Fuel Economy Guide: Un libro, publicado en cooperación de la Agencia de Protección del Medioambiente (EPA), que provee información de economía de para modelos del año en curso. Esta guía se distribuye a vendedores de automóviles, bibliotecas y esta disponible en Internet.
- Fuel Economy Web Site: Un sitio web desarrollado y mantenido por Clean Cities y la EPA que provee estimaciones de economía de combustible para modelos desde 1985 al presente, comparaciones entre vehículos, incentivos tributarios para híbridos y vehículos que funcionan con combustibles alternativos.
- MotorWeek Features: Clean Cities trabajaron con MotorWeek, un programa de televisión aclamado por la crítica para llevar información de economía de combustible y combustibles alternativos a audiencias de televisión.
- Partnership Program: Clean Cities esta alentando la coalición local para encontrar formas de aumentar el conocimiento del consumidor en temas de la economía de combustible.

Leyes federales requieren que los fabricantes de automóviles determinen la economía de combustible de los vehículos nuevos vendidos en los Estados Unidos. Esta información se provee en una etiqueta de economía de combustible fija en el parabrisas del vehículo, para ayudar a los consumidores a realizar una decisión informada tomando en cuenta la economía del vehículo.
ANÁLISIS E IMPLEMENTACIÓN DE UN SISTEMA DE CERTIFICACIÓN DE EFICIENCIA ENERGÉTICA PARA VEHÍCULOS MOTORIZADOS

Figura 2.12: Programa de eficiencia energética en USA
Figura 2.13: Etiqueta de información de economía de combustible
2.4 ENSAYOS E INFRAESTRUCTURA PARA DETERMINAR EFICIENCIA ENERGÉTICA

Se analizan a continuación las distintas metodologías experimentales de ensayo para determinar los indicadores de eficiencia energética discutidos en secciones precedentes. Este análisis constituirá la base para la definición de los protocolos a ser aplicados en nuestro país, para los mismos propósitos.

2.4.1 Unión Europea

La Directiva 93/116/EC, que se aplica solo a vehículos livianos de pasajeros, establece que a partir del 1 de enero de 1996 al proceso de homologación se deben agregar las emisiones de CO$_2$ y el consumo de combustible. Como se menciona anteriormente las emisiones de CO$_2$ y el consumo de combustible se realizan en los ensayos de medición de emisiones requeridos para la homologación de vehículos nuevos. En la Unión Europea la regulación de emisiones para vehículos livianos se rige por la Directiva 70/220/EEC. Esta Directiva ha sido enmendada una serie de veces. Dentro de las modificaciones más relevantes se encuentran:

- **Estándar Euro I:** Directiva 91/441/EEC para automóviles de pasajeros y 93/59/EEC para automóviles y camiones livianos.
- **Estándar EURO II:** Directiva 94/12/EC o 96/69/EC
- **Estándar EURO V (2008):** Propuesta de regulación publicada en Diciembre de 2005

En Junio de 1991 el Consejo de Ministros de la comunidad Europea adopta la Directiva Consolidada de Emisiones 91/441/EEC. Esta cubre no solo emisiones de escape sino además emisiones evaporativas. De acuerdo a esta Directiva las emisiones se deben certificar de acuerdo a la combinación de los ciclos ECE 15 y EUDC. El ciclo ECE 15 es representativo de la forma de conducción en las zonas céntricas de una ciudad europea y tiene por lo tanto una velocidad máxima de solo 50 km/h. Este ciclo no es representativo de todos los modos de conducción existentes por lo que se creo el ciclo EUCD (Extra Urban Driving Cycle) que tiene una velocidad máxima de 120 km/h. Modificaciones posteriores incluyen la incorporación de nuevos estándares de emisión. En el año 2000 se modifica el procedimiento experimental eliminando los 40 s de precalentamiento considerados antes de la toma de muestras. Este ciclo modificado se conoce como NEDC (New European Driving Cycle). Las emisiones se determinan de acuerdo a una combinación de los ciclos ECE 15 + EUDC + NEDC.

16 COM(2005) 683
Para las emisiones de CO₂ se obtiene un valor resultado de la combinación de los ciclos de conducción y para el consumo se debe reportar un valor para cada ciclo así como para la combinación de estos.

2.4.2 Estados Unidos

La economía de combustible se mide en condiciones controladas de laboratorio utilizando un procedimiento estándar especificado por ley. Los fabricantes prueban sus propios vehículos, usualmente prototipos, y reportan los resultados de la EPA. quien revisa los resultados y confirma aproximadamente un 10-15% de éstos en sus propios ensayos en el laboratorio nacional de vehículos en combustible y emisiones.

En el laboratorio, el vehículo se instala sobre el dinamómetro de chasis, que simula la carga, la que se regula las características del vehículo a ensayar.

![Vehículo sobre dinamómetro](image)

Figura 2.14: Vehículo sobre dinamómetro

Sobre el dinamómetro, un conductor profesional conduce el vehículo a través de un ciclo de conducción estándar, que simula un recorrido promedio de la ciudad o autopista.
Figura 2.15: Vehículo sobre dinamómetro

Cada ciclo especifica la velocidad a la que el vehículo debe viajar durante cada segundo del ensayo. En la Figura 2.16 se observa cómo el conductor sigue la pantalla donde se muestra el ciclo.

Figura 2.16: Ciclo de conducción en pantalla

Una manguera conectada al tubo de escape captura los gases de escape del motor. La cantidad de carbono en el escape se mide para calcular la cantidad de combustible utilizado durante la prueba. Esta estimación es más exacta que un contador de combustible.
2.4.2.1 Ciclo de medición de economía de combustible

El ensayo de economía de combustible de la EPA utiliza dos ciclos de conducción desarrollados en el laboratorio.

Ciudad: Representan la conducción urbana, en el cual el vehículo comienza con el motor frío y se conduce de manera como en tráfico denso. El ciclo para el test incluye ralentí, y velocidad promedio es de 20 mph.

Autopista: Representa una mezcla de conducción en autopista rural y autopista interestatal, se conduce con el motor en caliente, un viaje típico en un flujo libre. La velocidad promedio está alrededor de 48 mph y no incluye paradas ni ralentí.

La Figura 2.18 y la Figura 2.19, representan en forma gráfica las trazas de los ciclos antes señalados y la Tabla 2.9, muestra los principales parámetros de estos ciclos.
Figura 2.18: Ciclo urbano

Figura 2.19: Ciclo Autopista
ANÁLISIS E IMPLEMENTACIÓN DE UN SISTEMA DE CERTIFICACIÓN DE EFICIENCIA ENERGÉTICA PARA VEHÍCULOS MOTORIZADOS

Tabla 2.9: Características de los Ciclos

<table>
<thead>
<tr>
<th>Características del Ciclo</th>
<th>Ciclo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ciudad</td>
</tr>
<tr>
<td>Tipo de viaje</td>
<td>Bajas velocidades en</td>
</tr>
<tr>
<td></td>
<td>trafico urbano</td>
</tr>
<tr>
<td>Distancia simulada</td>
<td>11 millas</td>
</tr>
<tr>
<td>Tiempo</td>
<td>31 minutos</td>
</tr>
<tr>
<td>Velocidad promedio</td>
<td>20 mph</td>
</tr>
<tr>
<td>Velocidad máxima</td>
<td>56 mph</td>
</tr>
<tr>
<td>Paradas</td>
<td>23</td>
</tr>
<tr>
<td>Tiempo de ralentí</td>
<td>18%</td>
</tr>
<tr>
<td>Temperatura al comienzo</td>
<td>Frío</td>
</tr>
<tr>
<td>Temperatura de Laboratorio</td>
<td></td>
</tr>
<tr>
<td>Aire Acondicionado</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: EPA

2.4.3 Chile

El Ministerio de Transportes por medio del Centro de Control y Certificación Vehicular (3CV) es el encargado de realizar las pruebas de homologación a los vehículos nuevos que entran al país.

El 3CV cuenta con la infraestructura necesaria para realizar pruebas de emisiones, el laboratorio posee los elementos mostrados en la Figura 2.20.

Dinamómetro de Chasis

Túnel de Dilución
2.4.3.1 Procedimiento de Homologación

El procedimiento de homologación en Chile responde a la realidad de Chile de país importador de tecnología. Según el Plan de Prevención y Descontaminación Atmosférica de la R.M. se aceptan dos métodos de homologación:

- Procedimiento de pruebas de emisiones de escape en el laboratorio de emisiones bajo norma EPA (3CV-LE-P001-V07-05).
- Procedimiento de pruebas de emisiones de escape en el laboratorio de emisiones bajo norma EURO III (3CV-LE-P004-V02-05).

Ambos procedimientos comprenden las siguientes etapas en el proceso de homologación.

- Homologación y/o certificación de emisiones que consiste en la constatación del nivel de emisiones de gases de escape y por evaporación de hidrocarburos a los vehículos motorizados livianos, medianos y pesados, que sean prototipos o vehículos de producción, de modelos que pretenden comercializarse en el país.
- Homologación de aspectos constructivos que consiste en la constatación del cumplimiento de los requisitos dimensionales y funcionales, incluyendo sistemas y componentes.
• Verificación de Conformidad de las emisiones vehiculares y de los aspectos constructivos, que puede practicarse sobre vehículos individuales de modelos ya homologados que serán comercializados en el país.
• Los planes y programas de investigación y desarrollo relativos a la homologación vehicular de los párrafos anteriores, que defina el Ministerio.

Por cada modelo aprobado mediante este procedimiento, se emite un Certificado de Homologación que señala el modelo de que se trata con sus principales especificaciones.

Los fabricantes, armadores, importadores o sus representantes deben emitir certificados individuales para cada vehículo de los que conforman la o las partidas de los modelos aprobados, los que deben reunir las características y ser otorgados conforme a las normas señaladas por el Ministerio.

Los vehículos cubiertos por un Certificado de Homologación Individual vigente, están liberados de revisión técnica y de gases para efectos de obtener permiso de circulación durante el período de validez del Certificado. La revisión técnica y de gases debe realizarse en un plazo no inferior a veinticuatro ni superior a treinta y seis meses contados desde el mes en que se otorgó dicho documento y según corresponda de acuerdo con el último dígito de su placa patente.

Los vehículos a los que no es aplicable el sistema de homologación, por haber sido importados directamente en calidad de usados, deben ser sometidos a la revisión especial de gases.

A continuación se presenta una descripción de ambos procedimientos.

2.4.3.2 Procedimiento de pruebas de emisiones de escape en el laboratorio de emisiones bajo norma EPA (3CV-LE-P001-V07-05)

El procedimiento bajo la norma EPA, responde a la normativa estadounidense CFR40 Part 86.132-82 versión 1988, a continuación se presenta un resumen de las etapas a realizar, el procedimiento completo se muestra en el Anexo Nº4

- Revisión del vehículo por parte del área de normas constructivas del 3CV.
- Realizar el Ciclo de preparación urban dynamometer driving Schedule (UDDS) Prep de acuerdo al CFR40.
- Dejar el vehículo en área de estabilización de 12 a 36 horas, en condiciones estabilizadas de temperatura y humedad entre 20ºC a 30ºC y 30% a 70% respectivamente.
En vehículos Otto de gasolina, realizar el Diurnal Enclosure Test de acuerdo al CFR40. Para vehículos a GNC, GLP o Diesel realizar directamente la prueba de emisiones.

Terminada la prueba evaporativa en frío, si esta hubiese realizado, y dentro de una hora como máximo, realizar la prueba de emisiones de escape ciclo UDDS, de acuerdo al CFR40.

Al termino de UDDS, imprimir reporte del Driver Aid, comprobar que no existan errores de conducción de lo contrario la prueba de emisiones de escape será invalidada, retirar el vehículo del dinamómetro y dentro de un máximo de 7 minutos, si corresponde (vehículos a gasolina solamente), realizar la prueba evaporativa en caliente.

Se realizarán 2 ensayos de emisiones de escape y 2 ensayos de emisiones evaporativas si corresponde. Se realizará una tercera prueba de escape cuando la diferencia entre las 2 pruebas realizadas supere los siguientes valores: HC = 0.024 g/km; Nox = 0.09 g/km; CO = 0.162 g/km y MP = 0.02 g/km

A continuación se presenta el diagrama de flujo del proceso.

![Figura 2.21: Diagrama de Flujo EPA](image-url)
A continuación se presenta el ciclo UDDS utilizado en la prueba de homologación.

![Gráfico del ciclo UDDS](image)

Figura 2.22: Ciclos de conducción UDDS

2.4.3.3 Procedimiento de pruebas de emisiones de escape en el laboratorio de emisiones bajo norma EURO III (3CV-LE-P004-V02-05).

El procedimiento bajo la norma EURO, responde a la directiva europea 70/220/CE, a continuación se presenta un resumen de las etapas a realizar, el procedimiento completo se muestra en el Anexo N°4.

- Revisión del vehículo por parte del área de normas constructivas del 3CV.
- Realizar el ciclo Euro III (fase urbana y extra-urbana) si el vehículo es Otto, si fuera Diesel se debe realizar 1 fase urbana y 3 fases extraurbana como preparación con los datos indicados en el formulario de pre acondicionamiento 3CV-LE-F006.
- Dejar el vehículo en el área de estabilización por un periodo de 12 a 36 horas y confeccionar el formulario de Soak 3CV-LE-F007.
- Realizar la prueba de emisiones de escape de ciclo Euro III, de acuerdo a la normativa 70/220/CE y lo indicado en el instructivo 3CV-LE-I008 para vehículos a gasolina, el instructivo 3CV-LE-I009 para vehículos diesel, utilizando el formulario 3CV-LE-F045 (vehículos a gasolina norma Euro III), o 3CV-LE-F046 (vehículo diesel Euro III), respectivamente y con los datos indicados en el formulario de preacondicionamiento 3CV-LE-F006.
• Se realizarán 2 ensayos de emisiones de escape y 2 ensayos de emisiones evaporativas si corresponde. Siendo el resultado el promedio aritmético de los 2 ensayos realizados. Se realizará un tercer ensayo de emisiones de escape cuando la diferencia entre los ensayos realizados supere para cada uno de los contaminantes un valor correspondiente del 25% del límite de la norma aplicada según la categoría del vehículo.

A continuación se presenta el diagrama de flujo del proceso.

![Diagrama de Flujo EPA](image)

Figura 2.23: Diagrama de Flujo EPA

A continuación se presenta el ciclo UDDS utilizado en la prueba de homologación.
2.4.4 Comparación entre Europa, Estados Unidos y Chile

La comparación entre Europa, Estados Unidos y Chile responde a una comparación sólo entre los dos primeros países, debido a que Chile toma los dos procedimientos mencionados para hacer sus ensayos en el país.
Se puede decir que el procedimiento europeo es menos exigente que el estadounidense, este concepto se fundamenta en que le ciclo europeo es más simple en cuanto a exigencia del vehículo. El ciclo europeo se presenta con un carácter más estacionario respecto a las aceleraciones presentes en el ciclo.

En cuanto a normativa en las siguientes figuras se observa la relación que existe entre normativas europeas y estadounidenses.

En el caso de vehículos a gasolina, se observa que la normativa Tier I estadounidense es similar a la normativa Euro III, ambas normativas vigentes en Chile, sin embargo el ciclo estadounidense se presenta como más exigente.

Figura 2.26: Comparación de normativas internacionales para vehículos livianos de gasolina

En el caso de vehículos diesel se observa algo similar, se comparan los estándares estadounidense y europeo. Sin embargo se debe hacer hincapié en que el ciclo europeo es menos exigente. No obstante el ciclo europeo tiene una etapa final de alta exigencia donde superaría en exigencia al ciclo americano.

Cabe destacar que el 80% de los vehículos homologados en Chile durante el año 2006 lo hicieron bajo la normativa europea.
2.4.5 Comparación del Ciclo NEDC (EUC+EUDC) con el Ciclo FTP 75

2.4.5.1 Potencia Específica del Vehículo (Vehicle Specific Power)

La potencia específica del vehículo (VSP) es la energía requerida para operar el vehículo por unidad de peso. La VSP incluye la resistencia a la rodadura, la resistencia al aire, la energía cinética para acelerar el vehículo y el efecto de la pendiente. Esta variable es considerada la mejor para estimar emisiones según los modelos de estimación de emisiones IVE y US EPA MOVES.

El modelo IVE divide la VSP en 20 niveles de operación, llamados “bins”, a su vez divide la operación del motor en 3 niveles de estrés, para un total de 60 bins. Normalmente la operación de los vehículos se encontrara en los primeros 20 bins.

La Figura 2.28 muestra los resultados de emisiones en base a VSP para CO₂ en un Bus Euro 3, los bins 0 a 9 representan los casos donde el vehículo desacelera (0 corresponde a la mayor tasa de desaceleración). Los bins 11 a 19 representan los casos en que el vehículo esta acelerando (19 es el caso de mayor aceleración). El bin 10 es donde la velocidad y la aceleración es muy pequeña o nula.
2.4.5.2 Comparación de ciclos utilizando la Potencia Específica del vehículo

Una vez comprendido el método de bins de VSP se puede analizar cada ciclo de manera de determinar las similitudes entre ambos ciclos, en este caso se analizarán los ciclos FTP 75 y el ciclo NEDC (EUC+EUDC). En la Figura 2.29 y en la Figura 2.30 se muestran los ciclos.
De manera de analizar como se comporta la VSP para ambos ciclos se muestran las siguientes figuras con los 60 bins para cada ciclo.
Figura 2.31: Bins de VSP 1-60 para los ciclos FTP-75 y NEDC
Se observa en la figura 2.31 que en los bines de nivel 1 (0 y 20) la relación para ambos ciclos es similar, sin embargo en los bines de mayor estrés (21-60) existe una predominancia del ciclo Europeo.

Si consideramos ahora la curva de emisiones para CO₂ de la Figura 2.28, estimación lineal, y aplicamos el porcentaje de tiempo en cada bin de potencia de ambos ciclos se pueden obtener las emisiones por segundo de CO₂ para cada ciclo.

Considerando los segundos del ciclo y la distancia recorrida se pueden obtener los gramos por kilómetro que hubiera emitido el vehículo de la figura en cada uno de los ciclos. El cálculo se encuentra resumido en la Tabla 2.10

<table>
<thead>
<tr>
<th>Ciclo</th>
<th>Emisión Instantánea [g/seg]</th>
<th>Duración Ciclo [Seg/ciclo]</th>
<th>Emisiones totales [g]</th>
<th>Longitud Ciclo [km]</th>
<th>Emisiones por distancia [g/km]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTP-75</td>
<td>6.49</td>
<td>1.875</td>
<td>12.165</td>
<td>17.80</td>
<td>683</td>
</tr>
<tr>
<td>EUC+EUDC</td>
<td>6.54</td>
<td>1.185</td>
<td>7.748</td>
<td>7.95</td>
<td>975</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

En conclusión, el resultado de este análisis indica que para vehículo medido en ambos ciclos el resultado determinará una mayor cantidad de emisiones de CO₂ bajo el ciclo Europeo que bajo el ciclo Estadounidense. Esto debido a la mayor cantidad de estrés asociada al ciclo europeo. La conclusión que se deriva de este análisis es que las emisiones son distintas y, por lo tanto, el consumo de combustible a partir del resultado de las emisiones será también distinto y por lo tanto no será comparable.
2.5 ANÁLISIS DE ASPECTOS TECNOLÓGICOS

En la actualidad existe un desarrollo tecnológico que no solo se limita al tipo de motor (diesel, gasolina y gas) sino a mejoras tecnológicas en las cajas de transmisión, carrocería, chasis e incorporación cada vez mayor de la electrónica, entre otros.

Los desarrollos tecnológicos apuntan a dos aspectos relevantes. En primer término alcanzar una mayor economía de combustible y, en segundo lugar, cumplir con los cada vez más exigentes estándares de emisión. Adicionalmente los actuales desafíos apuntan a lograr estos dos objetivos sin disminuir el rendimiento del motor y en el caso del diesel, incluso aumentarlo.

Entre las estrategias tecnológicas para mejorar la eficiencia energética en vehículos motorizados, es posible mencionar las siguientes:

- Aumento directo de la eficiencia de los motores a través de un diseño riguroso de sus elementos incorporando nuevas tecnologías y materiales
- Mejora de los sistemas de control y monitoreo del motor
- Mejora de la transmisión de potencia desde el motor
- Disminución de la resistencia del aire y al rodaje del vehículo
- Disminución del peso de los vehículos

2.5.1 Vehículos a Gasolina

El desarrollo tecnológico de mayor envergadura en el caso de los vehículos a gasolina es la inyección directa, lo que supone un sistema de mezcla heterogénea similar a la de los vehículos diesel. El sistema aumenta la relación de compresión y disminuye el consumo de combustible.

A comienzos de los 90’s comenzó a popularizarse un sistema de tiempo de apertura variable de válvulas (Variable Valve Timing, VVT), a través del cual es posible regular el tiempo de apertura en función de la velocidad del motor, lo que disminuye la fracción de combustible sin quemar y, en consecuencia, aumenta el rendimiento del motor.

2.5.2 Vehículos Diesel

El motor diesel se encuentra en una etapa de pleno desarrollo en lo que respecta a su sistema de inyección. Los sistemas de inyección electrónicos como el Common Rail se encuentran en constante evolución y los sistemas de post-tratamiento como filtros de partículas y catalizadores de oxidación y de NOx se presentan como la solución del punto de vista ambiental, sin embargo el costo de la tecnología de abatimiento sigue siendo muy alto.
El vehículo diesel se acerca en prestaciones al vehículo de gasolina manteniendo su economía de combustible y disminuyendo sus emisiones de MP y NOx. Sin embargo, el costo del vehículo puede ser más alto.

Los avances tecnológicos más relevantes para motores diesel son el ya mencionado sistema common rail, el inyector bomba y diversos diseños de inyectores controlados electrónicamente. Estos elementos tecnológicos, junto con disminuir las emisiones de contaminantes atmosféricos, contribuyen a mejorar un poco más los ya elevados rendimientos que caracterizan a este tipo de motores.

2.5.3 Combustibles Alternativos

En la actualidad la gasolina y el diesel son los combustibles más utilizados para aplicaciones vehiculares, sin embargo, debido a razones principalmente asociadas a la independencia energética, el nivel de emisiones contaminantes y los costos operacionales asociados a cada uno, los combustibles denominados alternativos, logran ganar terreno en el mercado mundial. Países como Italia, Brasil y Nueva Zelanda han desarrollado desde hace tiempo sistemas de transporte basados en otros combustibles, principalmente como resultado de consideraciones económicas asociadas a la disponibilidad de éstos en sus respectivos territorios.

Dentro los combustibles alternativos que tienen mayor grado de penetración en los parques vehiculares a nivel mundial, se encuentran las tecnologías que utilizan gas natural comprimido, GNC y gas licuado de petróleo.

En términos de eficiencia energética, se estima que el gas natural comprimido, GNC, debe alcanzar al menos el mismo nivel de eficiencia que las gasolinas. Otra forma de aplicación del gas natural es en estado líquido. GNL, cuya eficiencia energética es menos conocida por la reducida aplicación vehicular que este combustible presenta.

En relación con la aplicación de gas licuado de petróleo, LPG, existen estudios que reportan aumentos de consumo de LPG en comparación con la gasolina (11.3 litros de LPG/100km, en comparación con 8.7 litros de gasolina/100km). No obstante la eficiencia energética es muy similar (2,7 MJ/km para el LPG y 2,7 MJ/km para la gasolina).

Otro tipo de combustibles alternativos son los combustibles de origen orgánico. Dentro de estos se encuentran principalmente el biodiesel y el etanol. El biodiesel es un combustible alternativo de origen vegetal, elaborado a partir de materias primas renovables como aceites vegetales, grasas animales y otras. Su uso muestra un importante avance mundial, especialmente en Europa y en América Latina en países como Brasil y Colombia. Puede usarse como combustible en motores diesel con algunas pequeñas modificaciones en caso de utilizarse al 100% (100% - BD100), mezclado (20% - 80% = BD20) o
como aditivo (5% = BDS). El uso de biodiesel en vehículos motorizados o en motores de unidades estacionarias tiene varios beneficios ambientales; entre los que destaca la reducción de CO₂. El uso de 50.000 ton/año de biodiesel ayudaría a prevenir la emisión de 150.000 ton de CO₂.

El etanol anhídrico es un biocombustible que se obtiene de materias primas de origen agropecuario, comúnmente por fermentación de ciertos azúcares, especialmente glucosa. Puede ser usado como combustible alternativo para el transporte, sustituyendo el uso de combustibles de origen fósil. El uso del etanol anhídrico en la gasolina tiene varios beneficios ambientales; entre los que destaca la reducción de CO₂. De hecho, el uso del etanol en la gasolina puede resultar en una reducción neta de los niveles de dióxido de carbono atmosférico.
3 DISEÑO DEL PROGRAMA DE CERTIFICACIÓN DE EFICIENCIA ENERGÉTICA

Sobre la base de los antecedentes recopilados en las primeras etapas del estudio, se elabora un diseño de programa de certificación de eficiencia energética, que es coherente con las directrices principales del Programa País de Eficiencia Energética.

Los elementos principales de un programa de certificación de eficiencia energética vehicular, que deben ser considerados en su diseño, son los siguientes:

- Definición de los objetivos del programa
- Identificación del marco general de implementación
- Definición del universo al que será orientado
- Definición de la muestra a certificar
- Determinación de la capacidad necesaria a ser implementada
- Definición del indicador de eficiencia energética
- Definición del (los) ensayo(s) a ser utilizados
- Definición del protocolo de certificación
- Diseño del sello o etiqueta de eficiencia energética
- Definición del marco legal necesario
- Definición de instrumentos de fomento y difusión del programa
- Determinación de instrumentos e indicadores para evaluar el desempeño del programa
- Determinación de costos de implementación y operación del programa

En los párrafos siguientes se hará un análisis preliminar de cada uno de estos elementos, siendo objeto de una posterior etapa del estudio, llevar a cabo el diseño completo del programa.

3.1 DEFINICIÓN DE OBJETIVOS DEL PROGRAMA

De la información recopilada se pueden desprender los programas de eficiencia energética implementados internacionalmente, están orientados a influir sobre los fabricantes y a dar información a usuarios.

Dado que nuestro país no es productor de vehículos y, por otra parte, representa una fracción muy reducida del mercado de los grandes fabricantes a lo largo del mundo, se visualiza una escasa posibilidad de influir sobre éstos con el objeto de que se realicen mayores esfuerzos en desarrollos tecnológicos tendientes a mayores niveles de eficiencia energética. Además, las señales que actualmente están entregando los principales mercados de Europa, Asia y Norteamérica, parecen ser apropiadas para el logro de este objetivo.
Por otra parte, Como se señaló en secciones precedentes, los objetivos de un programa de eficiencia energética vehicular en el país, deben ser coherentes con los objetivos del PPEE, los que resumidamente son: creación de una cultura en Eficiencia Energética en el país, crear una institucionalidad público-privada en materias de Eficiencia Energética y proporcionar un marco legal e implementar instrumentos de fomento y educación.

En este contexto se propone que el objetivo fundamental del programa de eficiencia energética vehicular sea proporcionar información al usuario respecto de un indicador de eficiencia energética, determinado a través de un valor certificado por una entidad acreditada para los efectos, haciendo uso de un procedimiento estandarizado. Este objetivo, a juicio de este equipo consultor, satisface los objetivos del PPEE, dado que está contribuyendo a la creación de una cultura en materia de EE a través de la entrega de información fidedigna. En los elementos de diseño del programa se visualizan implícitos los otros tres componentes establecidos en la formulación de objetivos del PPEE, cuales son el establecimiento de una institucionalidad público-privada, la implementación del marco legal y regulatorio y la implementación de instrumentos de fomento y difusión.

3.2 IDENTIFICACIÓN DEL MARCO GENERAL DE IMPLEMENTACIÓN

El marco general de implementación de un programa de eficiencia energética en el país, queda definido por los siguientes elementos fundamentales:

- Institucionalidad y marco regulatorio existente
- Actual proceso de certificación y homologación vehicular
- Características del parque automotor local

3.2.1 Marco Institucional

De los antecedentes expuestos y analizados en la sección 2.2, se desprende que las atribuciones para fiscalizar el cumplimiento de lo establecido por la normativa vigente que afecta al sector transporte, recae sobre el Ministerio de Transportes y Telecomunicaciones. Asimismo, la mayor parte de articulado legal y regulatorio específico ha emanado de esta secretaría de estado.

Por otra parte, en materia de eficiencia energética, se visualiza como instituciones estatales involucradas en la materia, la Comisión Nacional de Energía y el propio Programa País de Eficiencia Energética. En el plano normativo y regulatorio, se identifican normas para la determinación de eficiencia energética de artefactos eléctricos.

En consecuencia, para la implementación de un programa de eficiencia energética aplicada a vehículos, se visualiza la necesidad de actuación del Ministerio de Transportes para aplicar los procedimientos de certificación y/o delegarlos a terceros y para la dictación de los decretos que sean necesarios.
para fijar los requisitos en cuanto a los procedimientos de ensayos y protocolos de etiquetado.

3.2.2 Proceso actual de certificación y homologación vehicular

En Chile existe un proceso de homologación obligatorio que deben cumplir todos los vehículos nuevos que ingresan al país. El encargado de realizar las pruebas de homologación es el Ministerio de Transportes por medio del Centro de Control y Certificación Vehicular (3CV). En el 3CV existe la infraestructura apropiada para realizar ensayos normalizados solo a las categorías de vehículos livianos y comerciales. Para los demás vehículos (vehículos pesados), el proceso de homologación de emisiones se realiza a través de un certificado de origen.

Los ensayos para determinar las emisiones de vehículos livianos y comerciales se realizan de acuerdo a la norma europea o americana, dependiendo de la solicitud de homologación.

El proceso de homologación se realiza a una muestra experimental que es inferior al total de los vehículos nuevos (marca y modelo) que ingresan al país. De acuerdo a los antecedentes proporcionados por el 3CV, los modelos de vehículos se agrupan por familias de acuerdo a criterios técnicos definidos por el ciclo. Estos criterios son principalmente la potencia y marca del motor, el peso del vehículo y la resistencia aerodinámica. Para cada familia se selecciona el vehículo más desfavorable en términos de la medición de emisiones para realizar los ensayos experimentales. Los resultados de las emisiones son asignados a toda la familia.

La Tabla 3.1 presenta todos los Procesos de homologación realizados en el 3CV y la cantidad de modelos homologados por año y por norma de emisión.

Se puede apreciar que hasta el año 2003 se utilizaba solo la norma de emisión norte americana (EPA) y que a partir del año 2004 se comenzó a utilizar la europea (EURO). La Tabla 3.2 presenta los mismos datos anteriores en forma porcentual para los años 2004 al 2006. La columna Total de los Procesos de Homologación muestra el porcentaje de procesos de homologación en relación al total de modelos homologados. Se puede ver que para el año 2005 este porcentaje es de 64%, es decir, el 36% no fueron medidos experimentalmente.
Tabla 3.1: Procesos de homologación y modelos homologados por el 3CV

<table>
<thead>
<tr>
<th>Año</th>
<th>Procesos de homologación</th>
<th>Total modelos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPA</td>
<td>EURO</td>
</tr>
<tr>
<td>1997</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>276</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>164</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>177</td>
<td>0</td>
</tr>
<tr>
<td>2001</td>
<td>179</td>
<td>0</td>
</tr>
<tr>
<td>2002</td>
<td>144</td>
<td>0</td>
</tr>
<tr>
<td>2003</td>
<td>123</td>
<td>0</td>
</tr>
<tr>
<td>2004</td>
<td>109</td>
<td>43</td>
</tr>
<tr>
<td>2005</td>
<td>71</td>
<td>146</td>
</tr>
<tr>
<td>2006</td>
<td>52</td>
<td>113</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir de estadísticas del 3CV. Nota: El año 2006 incluye hasta el 27 de octubre.

Tabla 3.2: Distribución porcentual de procesos de homologación y modelos homologados por el 3CV

<table>
<thead>
<tr>
<th>Año</th>
<th>Procesos de homologación</th>
<th>Total modelos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPA</td>
<td>EURO</td>
</tr>
<tr>
<td>2004</td>
<td>72</td>
<td>28</td>
</tr>
<tr>
<td>2005</td>
<td>33</td>
<td>67</td>
</tr>
<tr>
<td>2006</td>
<td>32</td>
<td>68</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia a partir de estadísticas del 3CV. Nota: El año 2006 incluye hasta el 27 de octubre.

Por otro lado, del total de los Procesos de homologación del año 2005, el 67% se homologó bajo la norma EURO y el 33% con la norma EPA. Estos porcentajes se repiten hasta la fecha, para el año 2006. Los valores anteriores representan al 69 y 31% del total de modelos homologados bajo la norma europea y EPA respectivamente.

3.2.3 Características del parque automotor local

Al no ser nuestro país productor de vehículos motorizados, el parque vehicular queda constituido por vehículos de diversos orígenes.

En Chile las categorías vehiculares de mayor incidencia en el consumo de combustible son los vehículos livianos y los comerciales que, en conjunto, representan el 63% del consumo de energía del sector transporte.

Dado que el programa de certificación de eficiencia energética se aplacaría, por definición, a vehículos nuevos, una idea del parque que sería objeto del programa la proporciona las estadísticas de ventas que reporta periódicamente la Asociación Automotriz de Chile, ANAC. De acuerdo a estas estadísticas, el año 2005 se vendieron 182.347 vehículos livianos y medianos particulares y comerciales y 11.046 camiones. Las marcas y modelos de vehículos livianos...
particulares más vendidas el año 2005, fueron Chevrolet Corsa, Toyota Yaris y Peugeot 206, representando el 56,2% del segmento acumulando un total de 34.033 unidades. En el segmento de medianos y 4x4, los más vendidos fueron Hyundai Terracan, Suzuki Grand Nomade y Ford Ecosport, con un total de 7.741 unidades lo que representa el 50,7% del segmento. Finalmente los vehículos comerciales más vendidos fueron la camioneta Nissan Terrano, el utilitario Peugeot Partner y la camioneta Toyota Hilux, con un total de 14.111 unidades lo que representa un 47,6% del segmento.

En el segmento de vehículos livianos y medianos, se han detectado 32 marcas que se comercializaron en el país durante el año 2005, con 283 modelos básicos, de acuerdo a lo ilustrado en la Tabla 3.3

<table>
<thead>
<tr>
<th>Nº</th>
<th>MARCA</th>
<th>MODELOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alfa Romeo</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Audi</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>BMW</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Chevrolet</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Chrysler</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>Citroen</td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>Dahiatsu/Toyota</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>Dodge</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>Fiat</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Ford</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>Honda</td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Hyundai</td>
<td>19</td>
</tr>
<tr>
<td>13</td>
<td>Jaguar</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>Volvo</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>Land Rover</td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>Porsche</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>Jeep</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>Kia</td>
<td>11</td>
</tr>
<tr>
<td>19</td>
<td>Lexus</td>
<td>10</td>
</tr>
<tr>
<td>20</td>
<td>Mazda</td>
<td>5</td>
</tr>
<tr>
<td>21</td>
<td>Mercedes Benz</td>
<td>13</td>
</tr>
<tr>
<td>22</td>
<td>Mini</td>
<td>4</td>
</tr>
<tr>
<td>23</td>
<td>Mitsubishi</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>Nissan</td>
<td>13</td>
</tr>
<tr>
<td>25</td>
<td>Peugeot</td>
<td>11</td>
</tr>
<tr>
<td>26</td>
<td>Renault</td>
<td>10</td>
</tr>
<tr>
<td>27</td>
<td>Saab</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>Samsung</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>Ssang Yong</td>
<td>7</td>
</tr>
<tr>
<td>30</td>
<td>Subaru</td>
<td>6</td>
</tr>
<tr>
<td>31</td>
<td>Suzuki</td>
<td>13</td>
</tr>
<tr>
<td>32</td>
<td>Volkswagen</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>283</td>
</tr>
</tbody>
</table>
3.3 MARCO LEGAL DE IMPLEMENTACIÓN

Para la aplicación de las medidas de eficiencia energética tratadas en este estudio se debe establecer el tipo de norma mediante la cual se propondrá su implementación, debiendo dentro de esta propuesta, y luego de determinar el tipo de norma en cuestión (informativa y obligatoria), establecer la que posea una mayor efectividad para los fines perseguidos.

Para determinar cual es la norma cuya aplicación sería más efectiva para dichos fines, es decir para la creación e implementación de un sello de Eficiencia Energética, y en concordancia a lo propuesto en el segundo informe de avance, se propone una norma de la categoría de Decreto Supremo.

El origen que en definitiva debe tener esta norma, va a depender de una decisión que debe adoptar el organismo técnico correspondiente. Al efecto, y luego de las múltiples reuniones sostenidas con diversos representantes de la Secretaría de Transportes, y demás actores de la contraparte técnica, debemos decir que el origen de la misma puede tener al menos dos fuentes. Uno de ellos, es que la norma en comento se dicte directamente a través del Ministerio de Transportes y Telecomunicaciones, teniendo en consideración que si bien se trata de un sello de Eficiencia Energética, éste se refiere a vehículos motorizados livianos, y por ello lo podemos relacionar en las materias regidas o contempladas dentro de la Ley 18.696, la que, en su artículo 3°, entre otras cosas, entrega a dicho Ministerio las facultades normativas respecto de la generación de determinado tipo de normas, como se explicó en el primer informe de avance.

En este caso se debe considerar la estrechísima relación existente entre normas de eficiencia energética de vehículos motorizados y las normas de emisión de los mismos vehículos (Decreto Supremo 211 del MTT), según consta en los documentos ya acompañados. Lo anterior, considerando que se pretende implementar una política de eficiencia energética basada esencialmente en la experiencia europea al respecto, en donde la disminución de los niveles de emisiones de motores de combustión interna, están estrechamente relacionadas al aumento de eficiencia energética de los mismos.

Por otra parte, y atendiendo el hecho que se trataría de una norma de Eficiencia Energética, también la podemos visualizar desde el punto de vista del “Programa País de Eficiencia Energética”, por lo que la misma, podría ser dictada a través de un Ministerio diverso al de Transportes y Telecomunicaciones, como por ejemplo, a través del Ministerio de Economía Fomento y Reconstrucción, y ello en directa relación con el Instituto Nacional de Normalización, corporación encargada, entre otras cosas, de la elaboración o implementación de normas de calidad en distintas áreas, como por ejemplo la eficiencia energética de aparatos eléctricos. Esto, si se decidiera que toda norma de este carácter, cualesquiera fuera su origen y destino, se implemente a través o con la supervisión de dicho Instituto.
En definitiva, el área de gobierno que deberá dictar esta norma, será determinada por la autoridad correspondiente en base a esta naciente política de Eficiencia Energética.

Una vez determinada el tipo de norma a dictar, y el Ministerio a través del cual se implementara la misma, es necesario tener presente, al menos los siguientes puntos:

a.- El decreto en cuestión debe cumplir los requisitos de toda norma de este carácter, es decir debe ajustarse a las normas constitucionales y legales vigentes, según ya se analizó en el primer informe de avance.
b.- Se debe dejar muy claro que se trata de una norma de carácter informativo a los usuarios (compradores) de vehículos livianos particulares, pero obligatoria para todos los vehículos del segmento determinado, en su primera venta a público.
c.- Es necesario atender al universo de vehículos con los cuales se deberá implementar esta norma, o con los cuales se comenzará a implementar, según costos y capacidades técnicas del o los organismos que deben efectuar la respectiva certificación.
d.- Según se desprende de las reuniones sostenidas, y debido a la complejidad y altos costos asociados a su implementación, la entrada en vigencia puede ser progresiva, es decir, que la norma establezca el universo completo de vehículos que se verán obligados por ella, pero se puede comenzar por un sub-segmento dentro del mismo universo que contempla este estudio. Esto tiene riesgos asociados a la discriminación en el momento de elegir a que segmentos será aplicada la norma, sin embargo la implementación podría ser por etapas proponiendo fechas de entrada en vigencia de las exigencias.
e.- Se debe tener especial cuidado en el preámbulo del Decreto Supremo a dictar, en el sentido de explicar cual es la necesidad de implementar esta norma, a quien va dirigida, su carácter informativo, y sobre todo que se trata de una norma que certifica el consumo de energía de cada vehículo y no otra cosa, por que cualquier error o confusión en dicha explicación podría dar lugar a múltiples reclamos y recursos legales para evitar su puesta en marcha.
g.- Respecto del organismo que realizará la certificación, y que no obstante en un principio se puede establecer que será el Centro de Control y Certificación Vehicular, debe quedar abierta la posibilidad que pueda realizarse por cualquier tipo de laboratorio u organismo similar, a elección de los importadores, que cuente con la respectiva autorización o calificación legal y técnica para ello.
h.- Se debe determinar, de la manera más acotada posible, el universo de probables reclamos de consumidores y de importadores, que, según lo demuestra la experiencia, podrían apelar a la ley del consumidor, los primeros, y a posibles recursos por discriminación, los segundos.
k.- El plazo de implementación del sello o del proceso de certificación para la totalidad del segmento de vehículos, debe ser definido según la capacidad técnica del o los organismos encargados de emitirlos. Se
puede establecer un plazo directamente asociado a la implementación de carácter técnico de dichos organismos, o un plazo prudente en el tiempo para dar posibilidad a la instalación de otros organismos de certificación.

En definitiva, y atendido todos los antecedentes antes desarrollados, la implementación de esta norma, se deberá realizar a través de la elaboración de un Decreto Supremo, en el cual se deben considerar las propuestas e indicaciones señaladas en los puntos anteriores.

3.4 UNIVERSO DE CERTIFICACIÓN

Los programas de eficiencia energética aplicados internacionalmente han sido orientados con un marcado énfasis en vehículos livianos y medianos de pasajeros de uso particular.

No obstante lo anterior, dado los objetivos propuestos para el programa de certificación, así como los objetivos del PPEE, en especial aquel que dice relación con la creación de una cultura en eficiencia energética en el país, hace conveniente extender los alcances del programa a todos los segmentos vehiculares. Sin embargo, un requisito importante para el programa es tener la capacidad para realizar ensayos que permitan certificar los valores de eficiencia energética, capacidad que, como se ha mencionado en secciones anteriores, existe solo para vehículos livianos y medianos.

En consecuencia, se propone que el universo de certificación sea aquel definido por las capacidades en cuanto a infraestructura de ensayos para determinar los valores de eficiencia energética, que en la actualidad corresponde a vehículos livianos y medianos, excluyendo los vehículos pesados de carga y de transporte de pasajeros.
3.5 SELECCIÓN DE UN INDICADOR DE EFICIENCIA ENERGÉTICA

En la sección 2.1.3, se resumen los indicadores de eficiencia energética que es posible definir para el sector transporte. Dado que el indicador de eficiencia energética debe ser un valor que represente de manera fácil y rápida el nivel energético del vehículo motorizado, se define este indicador como el consumo específico de combustible, expresado en kilómetros por litro (km/lt), que corresponde a un indicador de tipo técnico-económico, ya que vincula el consumo energético con el nivel de actividad, de acuerdo a lo señalado en la sección antes aludida.

El consumo de combustible en km/lt es un indicador de uso masivo que es reconocido por la gran mayoría del público que busca adquirir un vehículo motorizado.

3.5.1 Cálculo de indicador

El indicador de eficiencia energética será calculado en base a la ecuación de balance de carbono para combustión, la que normalmente se utiliza para estimar las emisiones en la salida del escape.

La expresión que permite calcular el valor del indicador, se deduce de la siguiente expresión general:

\[
E_{CO_2} = 44,011 \cdot \frac{CC}{12,011 + 1,008 \cdot r_{H:C,m}} - \frac{E_{CO}}{28,011} - \frac{E_{VOC}}{13,85} - \frac{E_{MP}}{12,011}
\]

Donde,

- \(E_{CO_2}\): Emisiones de CO₂ en g/km
- \(CC\): Consumo de combustible g/km
- \(E_{CO}\): Emisiones de CO en g/km
- \(E_{VOC}\): Emisiones de VOC en g/km
- \(E_{MP}\): Emisiones de MP en g/km
- \(r_{H:C,m}\): Relación de átomos de hidrógeno vs carbono en el combustible (~1.8 para gasolina y ~2.0 para diesel)

Conociendo las emisiones de CO₂, CO, VOC y MP se puede despejar de la ecuación el consumo de combustible en g/km, y obtener el resultado en km/lt, haciendo uso de la siguiente expresión:

\[
CC^* = \frac{\rho \cdot 44,011}{(12,011 + 1,008 \cdot r_{H:C,m})} \left(\frac{E_{CO_2}}{28,011} + \frac{E_{CO}}{13,85} + \frac{E_{VOC}}{12,011} \right)
\]
Donde, CC^* es el consumo de combustible en km/l y ρ es la densidad del combustible en g/l.

3.5.2 Valor de referencia

Una vez obtenido el valor de km/l, y con el objetivo de que el consumidor pueda realizar una comparación en el momento de la compra de un vehículo nuevo, la información entregada debe permitir la comparación con el resto de los vehículos. Para lo anterior se propone definir una comparación global a nivel de toda la flota de vehículos y una comparación entre vehículos equivalentes.

La Tabla 3.4 presenta la propuesta del equipo consultor para definir y clasificar la información que se entregaría en el sello de EE. En esta clasificación se diferencia por tipo de vehículo (pasajero o comercial) y además por cilindrada.

Tabla 3.4: Segmentos propuestos según tipo de vehículo

<table>
<thead>
<tr>
<th>Segmento</th>
<th>Sub-Segmento</th>
<th>Cilindrada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particulares</td>
<td>P1</td>
<td>Cil.(<1,0 \text{ lts})</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>1,0 lts(<\text{Cil.}\leq1,5 \text{ lts})</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>1,5 lts(<\text{Cil.}\leq2,0 \text{ lts})</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>2,0 lts(<\text{Cil.})</td>
</tr>
<tr>
<td>Comerciales</td>
<td>C1</td>
<td>Cil.(<1,0 \text{ lts})</td>
</tr>
<tr>
<td></td>
<td>C2</td>
<td>1,0 lts(<\text{Cil.}\leq1,5 \text{ lts})</td>
</tr>
<tr>
<td></td>
<td>C3</td>
<td>1,5 lts(<\text{Cil.}\leq2,0 \text{ lts})</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>2,0 lts(<\text{Cil.})</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

3.6 PROCEDIMIENTOS DE CERTIFICACIÓN

La certificación de eficiencia energética se hará a través de la determinación del indicador de consumo de combustible señalado en la sección anterior, y al estar éste en función de las emisiones, el procedimiento de certificación propuesto es el mismo que actualmente se lleva a cabo para certificar emisiones.

Dado, por otra parte, que en la actualidad se usan dos procedimientos de certificación de emisiones (bajos las normas EPA y EURO), el valor que resulte de aplicar las fórmulas señaladas en la sección 3.5.2, deberá indicar el tipo de ensayo con que se obtienen las emisiones utilizadas en el cálculo de consumo de combustible.
Como se señala en secciones anteriores, no existe una equivalencia entre las emisiones obtenidas a través de los dos tipos de ensayos, por lo tanto los valores de referencia que se utilicen para calificar la eficiencia energética de una marca y modelo dados, deben corresponder a valores obtenidos por el mismo tipo de ensayo.

3.7 DEFINICIÓN DE LA MUESTRA A ENSAYAR

Al igual que en el proceso de certificación y homologación de emisiones vehiculares actualmente existente en el país, el diseño del programa de certificación de eficiencia energética, debe incluir un procedimiento para definir la muestra a ser sometida a ensayos de certificación.

Cabe destacar que existe una diferencia fundamental entre un programa de homologación de emisiones y uno de certificación de eficiencia energética, lo que impone distintos niveles de exigencias a la hora de definir la muestra de ensayo. En efecto, un programa de homologación de emisiones tiene por objeto determinar si los vehículos cumplen con un estándar de emisión preestablecido, en cambio un proceso de certificación de eficiencia energética busca determinar el valor representativo de indicador para un tipo de vehículo que debe tener ejemplares de características homogéneas.

Las familias definidas por el 3CV para los ensayos de emisiones no siempre pueden ser adecuadas para determinar el consumo de combustible. Esto es debido a que pueden existir distintos modelos que pueden tener el mismo motor pero tener diferencias en el peso del vehículo y la respuesta aerodinámica. Estos parámetros inciden fuertemente en el consumo de combustible. Debido a esto lo ideal sería realizar la medición de consumo de combustible para cada modelo particular.

Se plantea, por lo tanto que para formar las familias de vehículos para medir el consumo de combustible se deben considerar los siguientes elementos adicionales a los ya considerados al establecer las familias para determinar las emisiones:

1. Un modelo de vehículo por familia.
2. Diferenciar por carrocería del vehículo en las categorías Sedan, Hatchback y Station Wagon.
3. Diferencia por el número de cabinas presentes en Simple, Doble o Extendida.

Con estos elementos adicionales, se puede asegurar una diferencia en el peso y en la resistencia aerodinámica menor entre los distintos vehículos que constituyen una familia y, por lo tanto, un consumo de combustible más representativo para cada familia.
3.8 CAPACIDAD DE CERTIFICACIÓN

Otro punto a analizar es la capacidad presente y futura para realizar los ensayos para determinar eficiencia energética. De acuerdo a la información entregada por el 3CV la capacidad para realizar ensayos de emisiones de vehículos livianos y medianos es 24 ensayos por semana lo que equivale a 1.152 al año. El año 2005 se realizaron 217 procesos de homologación. Cada proceso de homologación representa entre 2 y 3 ensayos dependiendo del resultado de estos. Suponiendo que se realizan 3 ensayos por proceso de homologación resulta que en el 2005 se habrían realizado 651 ensayos, lo que representa aproximadamente un 56% de la capacidad del 3CV. Suponiendo que se ensayaran todos los modelos (341 en el año 2005) el porcentaje de utilización sería de un 88% (1023 ensayos).

En la Figura 3.1 se muestra la evolución de las ventas de vehículos livianos y comerciales y la cantidad Procesos de Homologación y Modelos Homologados por el 3CV desde el año 1998 hasta el 2005.

![Figura 3.1: Ventas anuales de vehículos livianos y comerciales y procesos de homologación y modelos homologados por el 3CV.](image)

Fuente: Elaboración propia a partir de estadísticas de la ANAC y del 3CV.

Es por lo tanto deducible de los datos anteriores que la cantidad de procesos de homologación y los modelos homologados siguen la misma tendencia que la de la venta de vehículos nuevos.

Considerando los criterios adicionales para la agrupación de los vehículos presentados en la sección anterior se obtiene, para el año 2005, un aumento en la necesidad de ensayos del orden de un 25%. La Figura 3.2 presenta la proyección de las ventas y los correspondientes procesos de homologación y
ANÁLISIS E IMPLEMENTACIÓN DE UN SISTEMA DE CERTIFICACIÓN DE EFICIENCIA ENERGÉTICA PARA VEHÍCULOS MOTORIZADOS

modelos homologados considerando la tendencia presentada entre los años 2003 y 2005 así como la estimación del aumento de ensayos considerando la determinación del consumo de combustible.

Además de los ensayos mencionados en las instalaciones del 3CV se realizan la homologación de motocicletas, la verificación de conformidad mas algunos proyectos puntuales de medición de emisiones. Esto último lleva a que hoy en día la capacidad del 3CV se encuentre copada. La realización de nuevos ensayos requeriría, por lo tanto, la instalación de un nuevo laboratorio.

![Gráfico 3.2: Proyección de Ventas anuales de vehículos livianos y comerciales v/s procesos de homologación y modelos homologados por el 3CV.](image)

Fuente: Elaboración propia a partir de estadísticas de la ANAC y del 3CV.

Además de los ensayos mencionados en las instalaciones del 3CV se realizan la homologación de motocicletas, la verificación de conformidad mas algunos proyectos puntuales de medición de emisiones. Esto último lleva a que hoy en día la capacidad del 3CV se encuentre copada. La realización de nuevos ensayos requeriría, por lo tanto, la instalación de un nuevo laboratorio.

3.9 PROCEDIMIENTOS EN PERIODO DE TRANSICIÓN

Dada la proyección de demanda para ensayos de emisiones, producto de la proyección de ventas y el aumento de vehículos a ensayar en cada marca – modelo, se estima oportuno considerar una etapa de transición, en la cual se acepten certificados de eficiencia energética provenientes de programas llevados a cabo en los países de origen de los vehículos que se comercializan en el país. Esto es, se propone aceptar los valores de indicador de eficiencia
energética asignados en origen, los que serán considerados en la elaboración de sello diseñado localmente.

3.10 DISEÑO DEL SELLO

A continuación se generarán algunas alternativas de diseño del sello de eficiencia energética vehicular. Como primer punto a ser abordado se hará un análisis de la información que el sello debe contener, luego de lo cual se mostrarán alternativas de diseño con los alcances correspondientes en términos de dimensiones y ubicación.

3.10.1 Análisis Comparativo

Como primer factor a considerar en la creación de un sello de eficiencia energética nacional, se deben analizar las experiencias internacionales. La cantidad de información entregada al usuario en los distintos lugares en los cuales ya ha sido aplicado un sello de eficiencia energética es base fundamental en la definición de los parámetros a ser aplicados en Chile, es así como la Tabla 3.5 muestra y compara el sello europeo y el norteamericano.

La primera parte de la información contenida en los sellos permite identificar el vehículo y sus características principales en cuanto a propulsión y combustible. Además se puede apreciar que todos los sellos entregan el dato de consumo de combustible expresado en kilómetros por litro o en otras unidades equivalentes. En el caso del sello europeo además se incluye la información de las emisiones de Monóxido de Carbono (CO\textsubscript{2}) en gramos por kilómetro. Esto último se puede interpretar como una información demasiado específica asociada a la realidad europea en los temas de gases efecto invernadero y las metas de reducción de dichos gases impuestas por el Protocolo de Kyoto.

Tanto el sello europeo como el norteamericano incluyen una base de comparación de los datos de eficiencia con otros vehículos de su propia clase. En el caso europeo se compara y clasifica dentro del nivel de emisiones de monóxido de carbono, en tanto en el sello norteamericano se comparan los consumos de combustible y se da una referencia del nivel al que se encuentra el vehículo en cuestión.

Importante es señalar que ambos sellos incluyen el componente de costo entre la información que entregan, esto basado en datos referenciales permite al usuario armarse de una proyección de gastos en combustible cuando adquiere un vehículo energéticamente más eficiente.
Tabla 3.5: Comparación de información entregada por sellos internacionales

<table>
<thead>
<tr>
<th>Información</th>
<th>Sello UE</th>
<th>Sello USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Modelo</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Motor</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Transmisión</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Año</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Combustible</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Clases de EE</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Consumo km/lt</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Consumo en ciudad</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Consumo en carretera</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Emisiones de CO₂</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Costo Consumo</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Rebaja Impuesto</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Rango de economía por clase</td>
<td></td>
<td>•</td>
</tr>
<tr>
<td>Rango de economía en la mayoría de los conductores</td>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

Aunque no está dentro del segmento que es parte del estudio, conviene revisar lo que se ha hecho hasta el momento con la normativa de eficiencia energética para electrodomésticos. En este caso la Figura 3.3 muestra los sellos contenidos en la NCh 3000, 3010 y 3020.

![Figura 3.3: Sellos de Eficiencia Energética para electrodomésticos](image)
Como se puede apreciar estos sellos están inspirados en la normativa europea, y están muy cercanos al concepto del sello asociado a la certificación vehicular que se aplica en ese continente, mostrando una clasificación que permite al usuario visualizar el valor de eficiencia dentro de categorías definidas en base a los ensayos.

Cabe entonces determinar en base a lo que ya hemos visto, qué es lo que queremos informar al usuario en el caso del sello de eficiencia energética nacional.

Como ya se definió en este mismo capítulo, el indicador de eficiencia energética será el consumo de combustible expresado en kilómetros por litro, es entonces este el dato fundamental y eje de la información a ser entregada. Por otra parte la información contenida en los sellos internacionales es bastante similar, y se rescatará todo lo que tiene que ver con la identificación del vehículo y el posicionamiento dentro de un rango que permita al comprador comparar las alternativas dentro de un mismo segmento. Una particularidad es la información sobre consumo de CO₂, sólo el sello europeo entrega las emisiones esta información y para el mercado chileno no parece un dato de fácil lectura, dado que nuestra cercanía al tema de los bonos de carbono y el protocolo de Kyoto aun no es importante.

Otro factor a tener en consideración y que se puede apreciar también en los sellos referenciados, es que para efectos visuales no es conveniente recargar la etiqueta de información escrita. En este sentido resulta más efectivo el sello europeo, ya que utiliza más el color y gráficamente da a entender una serie de datos que están respaldados por ensayos ejecutados en laboratorios. Por el contrario, el sello estadounidense carece de elementos visuales gráficos y abusa de los textos en un tamaño difícil de ser leído por el usuario.

En la Tabla 3.6 se resume la propuesta de información que debe estar contenida en el sello de eficiencia energética.
Tabla 3.6: Propuesta de información contenida en el sello de EE

<table>
<thead>
<tr>
<th>Información</th>
<th>Sello UE</th>
<th>Sello USA</th>
<th>Propuesta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Modelo</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Motor</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Transmisión</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Color</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Año</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Combustible</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Clases de EE</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Consumo km/lt</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Consumo en ciudad</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Consumo en carretera</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Emisiones de CO₂</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Costo Consumo</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Rebaja Impuesto</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Rango de economía por clase</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Rango de economía en la mayoría de los conductores</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

3.10.2 Rangos de eficiencia energética

Además de la información cuantitativa que contiene el sello, se debe definir aquella de carácter cualitativa que permite facilitar la interpretación del tema en cuestión por parte del usuario. Como ya se mencionó anteriormente es importante para la decisión de compra que el usuario esté enterado del rango de eficiencia energética dentro del cual se encuentra el vehículo que está analizando y que posteriormente podría adquirir. Para ésto se propone mantener la nomenclatura europea de colores, estableciendo cinco niveles de eficiencia considerando porcentajes asociados al nivel de economía, esto implica que en el sello se verá en cual de estos niveles califica el vehículo y podrá ser comparado con otros de la misma categoría.

En la siguiente tabla se muestran los rangos propuestos para el sello:
Tabla 3.7: Tabla de colores según la economía de combustible

<table>
<thead>
<tr>
<th>Quintil</th>
<th>Nivel de economía</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20%</td>
<td>Más económico</td>
<td>☢</td>
</tr>
<tr>
<td>20%-40%</td>
<td></td>
<td>☢</td>
</tr>
<tr>
<td>40%-60%</td>
<td></td>
<td>☢</td>
</tr>
<tr>
<td>60%-80%</td>
<td></td>
<td>☢</td>
</tr>
<tr>
<td>80%-100%</td>
<td>Menos económico</td>
<td>☢</td>
</tr>
</tbody>
</table>

Fuente: Elaboración Propia

3.10.3 Consideraciones de diseño

En este punto se mostrará el diseño final de la etiqueta o sello de eficiencia energética. Dado que el fin del sello es la información al usuario hemos planteado dos alternativas complementarias para la visualización de la información:

a) Sello Informativo removible o folleto en papel

Las estadísticas internacionales muestran que los sellos que han sido aplicados entregan mucha información. Con esto no se quiere decir que la información sea innecesaria, pero visualmente a veces no es efectiva. La idea de tener un sello removible busca entregar toda la información en un adhesivo de grandes dimensiones y que luego de ser leído por el usuario que puede ser removido. Las dimensiones de este adhesivo han sido pensadas para cubrir grandes superficies del parabrisas o de otro lugar del vehículo que sea visible a la hora de realizar la compra o revisar el vehículo.

Una alternativa a esta opción es incluir la misma información y con el mismo diseño pero en formato de papel, así puede ser guardada en la guantera o junto con los papeles del vehículo para que pueda ser revisada y forme parte del material de consulta del consumidor.

En la Figura 3.4 y Figura 3.5 se muestran dos alternativas de diseño de sello removable
Figura 3.4: Sello de Eficiencia Energética removible
b) Sello Permanente

La utilidad de este sello se evalúa en el largo plazo, incluso pudiendo ser un referente para adquisición de vehículos usados una vez implementada la medida. Se entregará información más compacta y el sello tendrá dimensiones menores pero debe ser ubicado en el parabrisas del vehículo en un lugar visible para cualquier usuario o potencial consumidor. Además permitirá generar la conciencia de eficiencia energética vehicular e instalar el concepto entre los usuarios. La Figura 3.6 y Figura 3.7 muestran dos alternativas para este tipo de sello.
Figura 3.6: Sello de Eficiencia Energética permanente
Figura 3.7: Sello de Eficiencia Energética permanente

3.11 RECOMENDACIONES DE INSTRUMENTOS DE FOMENTO Y DIFUSIÓN DEL PROGRAMA

Un programa de la naturaleza del aquí discutido, requiere, a diferencia de otros como el de certificación de emisiones, un especial énfasis en su fomento y difusión.

Está claro que, en ausencia de tal programa de difusión, es probable que el usuario ni siquiera se percate de la existencia de sello o si lo hace, no entienda las implicancias de la información contenida en éste.

La contraparte ha definido como parte de este estudio, y como parte de una serie de proyectos enfocados a la eficiencia energética vehicular, desarrollar un seminario preliminar informativo a un público compuesto por actores del sector transporte y funcionarios de ministerios involucrados en el Programa País de Eficiencia Energética.

Los contenidos de este primer seminario serán definidos por la contraparte técnica pero a continuación se detallan los elementos de difusión que deberían establecerse como mínimo para asegurar eficacia de la medida:
a) Se deben realizar talleres o grupos focales en donde se valide la información que contiene el sello y su entendimiento por parte de los consumidores

b) Se debe validar el diseño y la configuración de la información y se debe masificar la imagen del proyecto.

c) Se debe medir el impacto de la medida tanto en la decisión de compra del consumidor como en la logística por parte de los distribuidores y representantes. Establecer estadísticas e informarlas a los consumidores

d) Se debe analizar los tiempos de aplicabilidad y los ajustes a la medida por parte del gobierno y los distribuidores y representantes nacionales.

e) Se debe establecer una coordinación con los representantes de marcas internacionales y distribuidores en el país, para que la medida de información de eficiencia energética sea percibida como un adicional a la hora de vender los productos. Es importante que también se contemple la participación de los distribuidores en el ajuste de las medidas tanto de aplicación como de difusión.

f) Se debe evaluar la posibilidad de generar medidas adicionales de promoción y fomento tales como rebajas en los impuestos a los vehículos más eficientes, o rebajas en cobros tales como permiso de circulación, patentes o seguros.

g) Se deben diseñar canales de difusión complementarios al sello propiamente tal. Esto implica difusión por Internet, políticas comunicacionales de gobierno, seminarios, ferias, promoción en televisión, insertos en cada una de las páginas web de las marcas, acuerdos con asociaciones de distribuidores, etc.

En el Anexo 5 se adjuntan dos propuestas para el material de diseño que forma parte del seminario a ser realizado.

3.12 SEGUIMIENTO DEL PROGRAMA

Se propone implementar un sistema de evaluación de desempeño del programa que cubra tanto una fiscalización de su cumplimiento, como una evaluación del impacto que éste produce. El objetivo de la fiscalización es velar por el cumplimiento de los procedimientos y protocolos definidos en párrafos anteriores y, el objetivo del seguimiento del impacto del programa de eficiencia energética, es principalmente evaluar cuantitativamente las eventuales reducciones de consumo energético del sector transporte, como resultado de la implementación del programa.
En cuanto a la fiscalización del cumplimiento de los procedimientos y protocolos del programa, se estima que reforzar los actuales canales de fiscalización que se aplican a la certificación de emisiones e implementación del sello verde, sería suficiente.

En cuanto a la evaluación del impacto del programa, será necesario, en primer término, elaborar una línea base, es decir, definir el escenario previo a la implementación del programa, para su comparación en años sucesivos a su implementación. Para la definición de los escenarios tanto de línea base como de años sucesivos de implementación, se propone caracterizarlos a través de elaboración de bases de datos de ventas anuales de vehículos; identificando marca, modelo y variaciones de éstos, con sus respectivos indicadores de eficiencia energética, expresado como consumo específico. A través del poder calorífico promedio de los combustibles y un nivel de actividad promedio por segmento, se podrá calcular y comparar, el consumo energético asociado a cada escenario.

Se recomienda que la autoridad a cargo de la fiscalización de cumplimiento de la normativa que respalda la utilización del sello verde (emisiones) y de aspectos de seguridad, sea la que fiscalice la implementación del sello de eficiencia energética. Asimismo, para efectuar el seguimiento del impacto de implementación del programa de certificación de eficiencia energética, debería ser de responsabilidad del Programa País de Eficiencia Energética, o la entidad que esta designe.

3.13 ESTIMACIÓN DE COSTOS DE IMPLEMENTACIÓN Y OPERACIÓN

La implementación del programa de certificación de eficiencia energética se llevará a cabo en dos etapas. En la primera etapa la certificación del consumo de combustible se realizará en base a los ensayos realizados en forma rutinaria en el 3CV para la homologación de vehículos más la recepción de certificados de consumo de combustible internacionales.

Dentro de los costos de implementación se distinguen:

- Estudios preliminares de diseño del programa
- Programas de difusión y fomento iniciales

En cuanto a los costos de operación, se han identificado los siguientes:

- Costos por verificación de antecedentes ($ 85.550)
- Fabricación de los sellos (968.660)\(^{17}\)
- Aplicación de los sellos (2.000.000)
- Programas de difusión permanente
- Fiscalización de la aplicación de sellos

\(^{17}\) Precios referenciales en base a impresión de 200.000 sellos adhesivos a color fabricados en imprenta privada.
Los costos de programas de difusión permanente y de fiscalización formarán parte de los siguientes estudios a realizar en esta línea de trabajo, ya que es necesario formular un programa de fiscalización que está asociado a la aplicación de la normativa a generar y a la difusión de esta.

Para la segunda etapa se contempla, además de los costos anteriores, los costos de inversión asociados a la instalación de un nuevo laboratorio y los costos de operación asociados a pruebas adicionales a realizar. Los costos anteriores se estiman según datos proporcionados por el 3CV en relación a sus actuales costos para proceso de homologación.

Costos de implementación:

- Equipos, instrumentos, infraestructura (US$ 1.430.000)

Costos de operación correspondientes al proceso de homologación:

- Costos por verificación de antecedentes 85.550 $/proceso
- Costos Indirectos 194.860 $/prueba
- Costos de Operación 61.700 $/prueba

Dado que la cantidad de pruebas por proceso de homologación varía entre 2 y 3 se tiene un costo total de operación cada proceso de homologación que varía entre los $ 622.520 y $ 902.930.

La Tabla 3.8 muestra la demanda adicional de ensayos a realizar así como el rango de costos asociados por concepto de la determinación del consumo de combustible considerando como año base el 2005.

Tabla 3.8: Número de ensayos adicionales y costos asociados al proceso de determinación del consumo de combustible

<table>
<thead>
<tr>
<th>Año</th>
<th>Ensayos</th>
<th>Rango de Costos (MM$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inferior</td>
</tr>
<tr>
<td>2005</td>
<td>163</td>
<td>101</td>
</tr>
<tr>
<td>2006</td>
<td>198</td>
<td>123</td>
</tr>
<tr>
<td>2007</td>
<td>236</td>
<td>147</td>
</tr>
<tr>
<td>2008</td>
<td>272</td>
<td>169</td>
</tr>
</tbody>
</table>

Todos los costos son estimados a la fecha de edición de este informe.
4 DISCUSIÓN Y CONCLUSIONES

Del análisis de la experiencia internacional, en cuanto a programas de eficiencia energética, se pudo detectar que estos programas están orientados a influir sobre los fabricantes y a dar información a usuarios, orientados principalmente a vehículos privados de pasajeros.

El programa de mayor desarrollo corresponde al Europeo, el que tiene como características que eficiencia energética se determina a través del consumo específico de combustible y de emisiones de CO₂ y que aplican ensayos normalizados que corresponden a los mismos utilizados para la medición de emisiones en procesos de certificación y homologación.

Se ha podido analizar la experiencia europea, asiática y norteamericana, donde se han consolidado programas de eficiencia energética que han influido en forma decisiva sobre los fabricantes quienes como respuesta han desarrollado tecnologías vehiculares con niveles de eficiencia energética en constante aumento.

Al mismo tiempo se han revisado las directrices del Programa País de Eficiencia Energética, que está siendo considerado como el marco global donde el programa objetivo de este estudio debe insertarse.

A partir de los antecedentes hasta ahora recopilados y principalmente sobre la base de la experiencia internacional, es posible inferir lo siguiente:

- Existen desde hace ya varios años, fuertes presiones para reducir los consumos específicos de combustible en vehículos motorizados, así como las emisiones de CO₂, principalmente debido la dependencia energética que tienen en mayor o menor grado los países y al daño global que producen los gases de efecto invernadero, GEI, que en el caso de la combustión es principalmente el dióxido de carbono, CO₂.

- Los programas de eficiencia energética estudiados, han sido orientados principalmente a influir sobre los fabricantes de automóviles y, en menor medida y muchas veces con un ánimo más bien informativo, a los usuarios.

Teniendo presente estas dos importantes observaciones, es preciso definir la orientación más apropiada del programa de eficiencia energética a ser implementado en el país.

Dado que nuestro país no es productor de vehículos y, por otra parte, representa una fracción muy reducida del mercado de los grandes fabricantes a lo largo del mundo, se visualiza una escasa posibilidad de influir sobre éstos con el objeto de que se realicen mayores esfuerzos en desarrollos tecnológicos tendientes a mayores niveles de eficiencia energética. Además, las señales
que actualmente están entregando los principales mercados de Europa, Asia y Norteamérica, parecen ser apropiadas para el logro de este objetivo.

Dado lo anterior, se propone que el programa de eficiencia energética aplicada a vehículos, contenga los dos siguientes elementos principales:

- Información al usuario con el objeto de influir sobre la decisión de compra, incorporando la variable eficiencia energética y, en consecuencia, el costo operacional en su decisión.

- Introducción de una nueva exigencia, que se añade a la ya existente en cuanto a emisiones de contaminantes locales, a los vehículos nuevos que ingresan al país para su comercialización, consistente en informar la eficiencia energética de cada modelo comercializado.

Sin perjuicio de la discusión que sobre esta materia pueda llegar a darse, la propuesta del grupo consultor es que el sello y el sistema que se diseñe en torno a éste, sea de carácter informativo al usuario, es decir, que entregue información fidedigna de indicadores de eficiencia energética, utilizando para ello consumo específico de combustible, obtenido en forma experimental a través de un ensayo estándar aplicando procedimientos acreditados. Por otra parte la propuesta incluye la obligatoriedad de informar por parte de los distribuidores automotrices.

El valor del indicador debe ir acompañado de información que precise la forma en que fue obtenido el resultado, además de otro tipo de información cuya identificación es parte del diseño del sistema y lo que es objeto de etapas posteriores del estudio. Además se propone que el sello sea aplicable solamente a vehículos livianos de pasajeros.

Otras características del proceso es que la certificación de la eficiencia energética vehicular sea realizada por el Centro de Control y Certificación Vehicular-3CV y que para estos efectos se aproveche su calidad de laboratorio certificado para ensayos de emisiones, siendo entonces solo necesario dar las atribuciones para calcular el consumo de combustible a través de los resultados de emisiones.
5 BIBLIOGRAFÍA

Sitios de Internet

2. www.fueleconomy.com
7. www.dieselnet.com

Documentos consultados

1. Comisión Nacional de Energía, CNE. Chile 2004
 “Estimación del Potencial de Ahorro de Energía mediante mejoramiento de la Eficiencia Energética de los distintos Sectores del Consumo en Chile”.

3. Sectra. Chile 2002
 “Actualización del Modelo de Cálculo de Emisiones Vehiculares, MODEM”

4. CONAMA. Chile 2004
 “Gases de Efecto Invernadero (GEI) para el caso de Chile (actualización)”.

5. ADAC e.V. 2005
 “Study on the effectiveness of Directive 1999/94/EC relating to the availability of consumer information on fuel economy and CO₂ emissions in respect of the marketing of new passenger cars”.

6. DLR German Aerospace Centre, Institute of Transport Research. 2004
 “Preparation of the 2003 review of the commitment of car manufacturers to reduce CO₂ emissions from M1 vehicles - Final report of Task A:
Identifying and assessing the reasons for the CO₂ reductions achieved between 1995 and 2003” - Report to the European Commission

 Sinsheim, Alemania 2004

8. Asif Faiz, Christopher S. Weaver, Michael P. Walsh. The International Bank 1996.
 “Air Pollution from Motor Vehicles: Standards and Technologies for Controlling Emissions”.

 “Procedimiento de pruebas de emisiones de escape en el laboratorio de emisiones bajo norma Euro III. Normativa 3CV- LE – P004-V02-05”.

 “Procedimiento de pruebas de emisiones de escape en el laboratorio de emisiones bajo norma Euro III. Normativa 3CV- LE – P001-V07-05”.

 “Computer programme to calculate emissions from road transport, Methodology and emission factors (Version 2.1).
ANEXOS
ANEXO N°1
NORMATIVA INTERNACIONAL DE E.E.
ANEXO N°2
NORMATIVA NACIONAL RELACIONADA
ANEXO N°3
NORMAS I.N.N.
ANEXO N°4
ANTECEDENTES CENTRO DE CONTROL Y CERTIFICACIÓN VEHICULAR